• Title/Summary/Keyword: Reference orbit estimation

Search Result 14, Processing Time 0.032 seconds

Satellite Orbit Determination using the Particle Filter

  • Kim, Young-Rok;Park, Sang-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.25.4-25.4
    • /
    • 2011
  • Various estimation methods based on Kalman filter have been applied to the real-time satellite orbit determination. The most popular method is the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). The EKF is easy to implement and to use on orbit determination problem. However, the linearization process of the EKF can cause unstable solutions if the problem has the inaccurate reference orbit, sparse or insufficient observations. In this case, the UKF can be a good alternative because it does not contain linearization process. However, because both methods are based on Gaussian assumption, performance of estimation can become worse when the distribution of state parameters and process/measurement noise are non-Gaussian. In nonlinear/non-Gaussian problems the particle filter which is based on sequential Monte Carlo methods can guarantee more exact estimation results. This study develops and tests the particle filter for satellite orbit determination. The particle filter can be more effective methods for satellite orbit determination in nonlinear/non-Gaussian environment.

  • PDF

Precise Orbit Estimation of GPS using GIPSY-OASIS (GIPSY-OASIS기반 GPS 정밀 궤도 추정)

  • Ha, Jihyun;Chun, Sebum;Park, Kwan-Dong
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.535-541
    • /
    • 2019
  • In this paper, scripts for estimating the reference orbits of navigation satellites were developed and their performance was analyzed as a preliminary study for the development of the Korean GPS precise orbit determination technology. The JPL Flinn AC's data processing strategy was applied and Linux-based scripts were developed using GIPSY-OASIS. For the analysis of the accuracy of the estimated reference orbit, the precise orbit provided by the international GNSS data center was used as the truth. As a result, estimated satellite coordinates showed almost exactly same patterns and trends with the reference precise orbits, and their differences are in the range of ±2 cm. The average error between the two orbits was less than 1 cm in the 3D direction, while the standard deviation was also at 1 cm. From these, we found that the developed scripts have excellent performance in precise orbit determination.

Effective Strategy for Precise Orbital and Geodetic Parameter Estimation Using SLR Observations for ILRS AAC

  • Kim, Young-Rok;Oh, Jay;Park, Sang-Young;Park, Chandeok;Park, Eun-Seo;Lim, Hyung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.159.2-159.2
    • /
    • 2012
  • In this study, we propose an effective strategy for precise orbital and geodetic parameter estimation using SLR (Satellite Laser Ranging) observations for ILRS AAC (Associate Analysis Center). The NASA/GSFC GEODYN II software and SLR normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 are utilized for precise orbital and geodetic parameter estimation. Weekly-based precise orbit determination strategy is applied to process SLR observations, and Precise Orbit Ephemeris (POE), TRF (Terrestrial Reference Frame), and EOPs (Earth Orientation Parameters) are obtained as products of ILRS AAC. For improved estimation results, selection strategies of dynamic and measurement models are experimently figured out and configurations of various estimation parameters are also carefully chosen. The results of orbit accuracy assessment of POE and precision analysis of TRF/EOPs for each case are compared with those of existing results. Finally, we find an appropriate strategy for precise orbital and geodetic parameter estimation using SLR observations for ILRS AAC.

  • PDF

GPS-Based Orbit Determination for KOMPSAT-5 Satellite

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Young-Rok;Roh, Kyoung-Min;Jung, Ok-Chul;Kim, Hae-Dong
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.487-496
    • /
    • 2011
  • Korea Multi-Purpose Satellite-5 (KOMPSAT-5) is the first satellite in Korea that provides 1 m resolution synthetic aperture radar (SAR) images. Precise orbit determination (POD) using a dual-frequency IGOR receiver data is performed to conduct high-resolution SAR images. We suggest orbit determination strategies based on a differential GPS technique. Double-differenced phase observations are sampled every 30 seconds. A dynamic model approach using an estimation of general empirical acceleration every 6 minutes through a batch least-squares estimator is applied. The orbit accuracy is validated using real data from GRACE and KOMPSAT-2 as well as simulated KOMPSAT-5 data. The POD results using GRACE satellite are adjusted through satellite laser ranging data and compared with publicly available reference orbit data. Operational orbit determination satisfies 5 m root sum square (RSS) in one sigma, and POD meets the orbit accuracy requirements of less than 20 cm and 0.003 cm/s RSS in position and velocity, respectively.

Extended Kalman Filter Based Relative State Estimation for Satellites in Formation Flying (확장형 칼만 필터를 이용한 인공위성 편대비행 상대 상태 추정)

  • Lee, Young-Gu;Bang, Hyo-Choong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.962-969
    • /
    • 2007
  • In this paper, an approach is developed for relative state estimation of satellite formation flying. To estimate relative states of two satellites, the Extended Kalman Filter Algorithm is adopted with the relative distance and speed between two satellites and attitude of satellite for measurements. Numerical simulations are conducted under two circumstances. The first one presents both chief and deputy satellites are orbiting a circular reference orbit around a perfectly spherical Earth model with no disturbing acceleration, in which the elementary relative orbital motion is taken into account. In reality, however, the Earth is not a perfect sphere, but rather an oblate spheroid, and both satellites are under the effect of $J_2$ geopotential disturbance, which causes the relative distance between two satellites to be on the gradual increase. A near-Earth orbit decays as a result of atmospheric drag. In order to remove the modeling error, the second scenario incorporates the effect of the $J_2$ geopotential force, and the atmospheric drag, and the eccentricity in satellite orbit are also considered.

Precise Orbital and Geodetic Parameter Estimation using SLR Observations for ILRS AAC

  • Kim, Young-Rok;Park, Eunseo;Oh, Hyungjik Jay;Park, Sang-Young;Lim, Hyung-Chul;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.269-277
    • /
    • 2013
  • In this study, we present results of precise orbital geodetic parameter estimation using satellite laser ranging (SLR) observations for the International Laser Ranging Service (ILRS) associate analysis center (AAC). Using normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 in SLR consolidated laser ranging data format, the NASA/GSFC GEODYN II and SOLVE software programs were utilized for precise orbit determination (POD) and finding solutions of a terrestrial reference frame (TRF) and Earth orientation parameters (EOPs). For POD, a weekly-based orbit determination strategy was employed to process SLR observations taken from 20 weeks in 2013. For solutions of TRF and EOPs, loosely constrained scheme was used to integrate POD results of four geodetic SLR satellites. The coordinates of 11 ILRS core sites were determined and daily polar motion and polar motion rates were estimated. The root mean square (RMS) value of post-fit residuals was used for orbit quality assessment, and both the stability of TRF and the precision of EOPs by external comparison were analyzed for verification of our solutions. Results of post-fit residuals show that the RMS of the orbits of LAGEOS-1 and LAGEOS-2 are 1.20 and 1.12 cm, and those of ETALON-1 and ETALON-2 are 1.02 and 1.11 cm, respectively. The stability analysis of TRF shows that the mean value of 3D stability of the coordinates of 11 ILRS core sites is 7.0 mm. An external comparison, with respect to International Earth rotation and Reference systems Service (IERS) 08 C04 results, shows that standard deviations of polar motion $X_P$ and $Y_P$ are 0.754 milliarcseconds (mas) and 0.576 mas, respectively. Our results of precise orbital and geodetic parameter estimation are reasonable and help advance research at ILRS AAC.

Attitude Determination Algorithm Design and Performance Analysis for CNUSAIL-1 Cube Satellite (CNUSAIL-1 큐브위성의 자세결정 알고리듬 설계 및 성능분석)

  • Kim, Gyeonghun;Kim, Seungkeun;Suk, Jinyong;Kim, Jong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.609-618
    • /
    • 2015
  • This paper discusses the attitude determination of the CNUSAIL-1 cube-satellite. The primary mission of the CNUSAIL-1 is sail deployment and operation in low Earth orbit, and the secondary mission is to look into influence of the sail deployment on satellite attitude and orbit. The attitude determination strategy is proposed depending on three mission phases, and its performance and applicability are verified through numerical simulations. This study considers the following sensors: Sun sensors and a three-axis magnetometer as attitude reference sensors, and a three-axis MEMS gyroscope as an inertial attitude sensor. Because sensors used for cube satellites have relatively low performances and worse noise characteristics, an Extended Kalman filter (EKF) is applied to attitude determination. Additionally, it has the merits to deal with the Gaussian noises and to predict the attitude even with no measurements from reference attitude sensors, especially in the eclipse of the cube satellite. The performance of the EKF is compared to a deterministic attitude determination technique, QUEST(QUaternion ESTimation).

Baseline Refinement for Topographic Phase Estimation using External DEM

  • Lee, Chang-Won;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.460-464
    • /
    • 2002
  • Multitemporal interferometric SAR has became an useful geodetic tool for monitoring Earth's surface deformation, generation of precise DEM, and land cover classification even though there still exist certain constraints such as temporal and spatial decorrelation effects, atmospheric artifacts and inaccurate orbit information. The Korea where nearly all areas are heavily vegetated, JERS-1 SAR has advantages in monitoring surface deformations and environmental changes in that it uses 4-times longer wavelength than ERS-l/2 or RADARSAT SAR system. For generating differential SAR interferogram and differential coherence image fer deformation mapping and temporal change detection, respectively, topographic phase removal process is required utilizing a reference inteferogram or external DEM simulation. Because the SAR antenna baseline parameter for JERS-1 is less accurate than those of ERS-l/2, one can not estimate topographic phases from an external DEM and the residual phase appears in differential interferogram. In this paper, we examined topographic phase retrieval method utilizing an external DEM. The baseline refinement is carried out by minimizing the differences between the measured unwrapped phase and the reference points of the DEM.

  • PDF

Attitude determination for three-axis stabilized satellite

  • Kim, Jinho;Lew, Changmo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.110-114
    • /
    • 1995
  • This paper presents the on-board attitude determination algorithm for LEO (Low Earth Orbit) three-axis stabilized spacecraft. Two advanced star trackers and a three-axis Inertial Reference Unit (IRU) are assumed to be attitude sensors. The gyro in the IRU provides a direct measurement of the attitude rates. However, the attitude estimation error increases with time due to the gyro drift and noise. An update filter with measurements of star trackers and/or sun sensor is designed to update these gyro drift bias and to compensate the attitude error. Kalman Filter is adapted for the on-board update filter algorithm. Simulation results will be presented to investigate the attitude pointing performance.

  • PDF

Application of Cost Estimation to Space Launch Vehicle Development Program (우주발사체 개발사업의 비용 추정 현황 및 사례)

  • Yoo, Il-Sang;Seo, Yun-Kyoung;Lee, Joon-Ho;Oh, Bum-Seok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.3
    • /
    • pp.165-173
    • /
    • 2007
  • A space launch vehicle system represents a typical example of large-scale multi-disciplinary systems, consisting of subsystems such as mechanical structure, electronics, control, telecommunication, propulsion, material engineering etc. A lot of cost is required to develop the launch vehicle system. A precise planning of R&D cost is very essential to make a success of the launch vehicle development program. Especially in the early development phase of a new space launch vehicle system, cost estimation techniques and analogy from past similar development data are very useful methods to estimate a development cost of the launch vehicle system. Now Korea Aerospace Research Institute is in charge of the KSLV-I (Korea Space Launch Vehicle-I) Program that is a part of Korea National Space program. KSLV-I Program is a national undertaking to develop launch capabilities to deliver science satellites of a 100kg-class into a low earth orbit. It is hereafter, going to plan to develop a new korean space launch vehicle. In this paper, first the development costs of well-known launch vehicles in the world are presented to provide a reference to make a development plan of a new launch vehicle. Second this paper introduces the present status of cost estimation applications at NASA. Finally this paper presents the results from application of a TRANSCOST, a parametric cost model, to derive a cost estimate of a new launch vehicle development, as an example.