A new reference point location method based on an edge map is proposed, where an orientation map is defined and used to find the edge map. Experimental results show that the proposed method can effectively detect the core point in poor quality and arch-type fingerprint images and produces better results in terms of the detection rate and accuracy than the sine map-based method.
This paper presents a highly fast and accurate facial region extraction method by using the skin-color-reference map and motion information. First, we construct the robust skin-color-reference map and eliminate the background in image by this map. Additionally, we use the motion information for accurate and fast detection of facial region in image sequences. Then we further apply region growing in the remaining areas with the aid of proposed criteria. The simulation results show the improvement in execution time and accurate detection.
A new reference point location method using the cosine component is proposed, where an edge map is defined and used to find the reference point. Because all processes used in the proposed method are performed at the block level, less processing time is required. Experimental results show that the proposed method can effectively detect the reference point with higher speed and accuracy for all types of fingerprints.
NGS 기술은 전체 게놈 시퀀싱 및 reference 게놈에 alignment에 의해 돌연변이 표현형에 관련된 돌연변이 식별에 이용한다. 그러나 품종 및 계통들을 resequence 하였을 경우 기존의 reference 게놈에 구조적 변이가 보이며, reference와 맞지 않는 게놈지역에서 돌연변이들은 단순한 alignment로 찾을 수 없다. 본 리뷰에서는 NGS 기술을 이용하여 돌연변이체로부터 변이 관련 유전자를 식별하는 MutMap, MutMap-Gap 및 MutMap+ 방법을 기술하였고 지금까지의 연구현황에 대해 기술하였다. 아울러 이들 방법은 nucleotide-binding site-leucine rich repeat (NBS-LRR) 그룹들의 병 저항성 유전자와 같이 구조적 변이를 가진 유전자를 분리하는 등 유용성에 대해 고찰하였다.
본 논문에서는 컬러 영상에서 배경의 복잡도와 객체의 위치에 관계없이 영상 내에 존재하는 중요 객체를 자동으로 추출하는 방법을 제안한다. 제안하는 방법은 중요 객체를 추출하기 위해 에지(edge) 정보와 색상(color) 정보를 이용한 특징 지도를 사용한다. 또한, 효과적인 객체 추출을 위해서 참조 지도(reference map)를 제안한다. 참조 지도를 생성하기 위해서는 영상에서 사람의 시각에 두드러지게 구분되는 영역을 표현하는 특징 지도(feature map)를 먼저 생성한다. 그런 다음, 특징 지도들을 효과적으로 결합하여 배경의 영향을 최소화 하면서, 중요 객체가 존재할 확률이 높은 영역들을 포함하는 참조 지도를 생성한다. 특징 지도를 생성하기 위해서는 밝기 차 정보를 나타내는 에지와 YCbCr 컬러와 HSV 컬러 공간에서의 색상 성분을 사용하며, 특징 지도에 대한 생성 방법은 영상 내에서 밝기차이와 색상차이에 의해서 나타나는 경계 부분을 추출하는 방법을 사용한다. 최종적으로 중요 객체가 존재하는 영역을 나타내기 위해서 참조 지도와 특징 지도들을 결합한 결합 지도(combination map)를 생성한다. 결합 지도는 중요 객체의 외곽선 정보만을 표현하기 때문에, 객체 전체를 표현할 수 있는 객체 후보 영역을 추출하는데, 이를 위해서는 객체 후보 영역을 추출하기 위해서 convex hull 알고리즘을 사용한다. Convex hull 알고리즘에 의해서 추출된 영역은 여전히 배경 부분을 포함하고 있으므로, 영상 분할 방법을 적용하여 배경을 제거한 후 영상에서의 중요 객체를 추출한다. 제안한 알고리즘의 성능을 실험적으로 확인한 결과, 평균적으로 84.3%의 정확율과 81.3%의 재현율의 성능을 보였다.
다중 참조 영상을 이용한 가변 블록 크기의 움직임 예측 및 보상 기법이 부호화 효율을 높이기 위해 H.264/AVC에 채택되었다. 하지만 움직임 예측 및 보상으로 인한 계산량은 다중 참조 영상과 가변 블록의 수에 비례하여 증가한다. 본 논문에서는 화질은 유지하며 계산량을 줄이기 위한 새로운 고속 참조 영상선택 방법을 제안한다. 먼저 다중 참조 영상들에 대해서 $4{\times}4$ 블록의 SAD값을 이용하여 움직임 벡터 참조 지도를 만든다. 다음으로 가변 블록 크기의 움직임 예측 및 보상이 움직임 벡터 참조 지도를 활용하여 실시된다. 제안하는 방법은 H.264/AVC 표준과 비교하여 BDPSNR은 평균적으로 0.01dB 나빠지고 BDBR은 약 0.27% 증가하지만 영상 부호화 속도를 약 38% 단축시킨다.
Journal of information and communication convergence engineering
/
제14권4호
/
pp.207-214
/
2016
In this paper, we propose a radial reference map-based location fingerprinting technique with constant spacing from an access point (AP) to all reference points by considering the minimum dynamic range of the received signal strength indicator (RSSI) obtained through an experiment conducted in an indoor environment. Because the minimum dynamic range, 12 dBm, of the RSSI appeared every 20 cm during the training stage, a cell spacing of 80 cm was applied. Furthermore, by considering the minimum dynamic range of an RSSI in the location estimation stage, when an RSSI exceeding the cumulative average by ${\pm}6dBm$ was received, a previously estimated location was provided. We also compared the location estimation accuracy of the proposed method with that of a conventional fingerprinting technique that uses a grid reference map, and found that the average location estimation accuracy of the conventional method was 21.8%, whereas that of the proposed technique was 90.9%.
Localization is the process of aligning the robot's local coordinates with the global coordinates of a map. A mobile robot's location is basically computed by a dead reckoning scheme, but this position information becomes increasingly inaccurate during navigation due to odometry errors. In this paper, the method of building a map of a robot's environment using ultrasonic sensor data and the occupancy grid map scheme is briefly presented. Then, the search and matching algorithms to compensate for the odometry error by comparing the local map with the reference map are proposed and verified by experiments. It is shown that the compensated error is not accumulated and exists within the limited range.
실감형 미디어에서 현실감을 느끼게 하는 가장 중요한 요소는 깊이 정보이다. 따라서 고품질의 실감형 미디어를 제작하기 위해서는 고품질의 깊이 정보를 획득하는 것이 필수적이다. 본 논문에서는 고품질의 깊이 정보를 획득하기 위하여 다중 시점 환경에서 깊이 지도를 개선하기 위하여 깊이 지도를 여러 개의 세그먼트로 분할 및 다중 시점간의 관계를 고려하는 알고리즘을 제안한다. 제안된 알고리즘은 슈퍼픽셀 세그먼테이션 기법을 사용하여 기준 시점의 깊이 지도를 여러 세그먼트로 나누고, 각 세그먼트를 인접 시점으로 투영한다. 이후 투영된 세그먼트의 정보를 이용하여 인접 시점의 깊이 지도를 평면 추정을 이용하여 개선한 후, 기준 시점으로 역투영된다. 여러 개의 인접 시점에 대해 이 과정을 반복하여 개선된 인접 시점들의 값들과 기준 시점의 초기 깊이 지도를 가중치 합으로 갱신하여 깊이 지도를 개선한다. 기존 다중 시점 스테레오 비전 알고리즘에 제안된 알고리즘을 적용한 시뮬레이션을 통해 제안된 알고리즘의 결과가 주관적 및 객관적으로 기존 알고리즘을 능가하는 것을 보인다.
본 논문에서는 시계열 image data를 안정되고 높은 정확도로 분류할 수 있는 자동분류법을 제안하였다. 제안한 방법은 대상 영역에 관한 분류도가 기존재하던 가, 아니면 최소한 시계열 image data 중 어느 한 image data가 분류되어 있다고 하는 전제조건에 그 기초를 두고 있다. 분류도는 training area를 선정하기 위라여 사용하는 기준주제도로 사용되어진다. 제안한 방법은 1)기준주제도를 사용한 training data의 추출, 2)taining data의 균질성에 의거한 변화화소의 검출, 3)검출된 변화화소에 대한 clustering, 4)training data의 재구성, 5)maximum likelihood classifier와 같은 판별법에 의한 분류 등 5개의 단계로 구성된다. 제안한 방법의 성능을 정량적으로 평가하기 위하여 4개의 시계열 Landsat TM image data를 제안한 방법과 숙련된 operator가 필요한 기존의 방법으로 각각 분류하여 비교 검토하였다. 그 결과, 기존의 방법으로는 숙련된 operator가 필요하고, 분류도를 얻기까지 수일이 소요되는 데 반하여, 제안한 방법으로는 숙련된 operator 없이, 신뢰성 있는 분류도를 수 시간 내에 자동으로 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.