• Title/Summary/Keyword: Reference coordinate

Search Result 287, Processing Time 0.033 seconds

Study on the design and the control of an underwater construction robot for port construction (항만공사용 수중건설로봇의 기구설계 및 제어에 관한 연구)

  • Kim, Tae-Sung;Kim, Chi-Hyo;Lee, Min-Ki
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.253-260
    • /
    • 2015
  • There are many efforts to mechanize the process for underwater port construction due to the severe and adverse working environment. This paper presents an underwater construction robot to level rubbles on the seabed for port construction. The robot is composed of a blade and a multi-functional arm to flatten the rubble mound with respect to the reference level at uneven terrain and to dig and dump the rubbles. This research analyzes the kinematics of the blade and the multi-functional arm including track and swing motions with respect to a world coordinate assigned to a reference depth sensor. This analysis is conducted interfacing with the position and orientation sensors installed at the robot. A hydraulic control system is developed to control a track, a blade and a multi-functional arm for rubble leveling work. The experimental results of rubble leveling work conducted by the robot are presented in land and subsea. The working speed of the robot is eight times faster than that of a human diver, and the working quality is acceptable. The robot is expected to have much higher efficiency in deep water where a human diver is unable to work.

Impact of Tropospheric Delays on the GPS Positioning with Double-difference Observables (대류권 지연이 이중차분법을 이용한 GPS 측위에 미치는 영향)

  • Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.5
    • /
    • pp.421-427
    • /
    • 2013
  • In general, it can be assumed that the tropospheric effect are removed through double-differencing technique in short-baseline GPS data processing. This means that the high-accuracy positioning can be obtained because various error sources can be eliminated and the number of unknown can be decreased in the adjustment computation procedure. As a consequence, short-baseline data processing is widely used in the fields such as deformation monitoring which require precise positioning. However, short-baseline data processing is limited to achieve high positioning accuracy when the height difference between the reference and the rover station is significant. In this study, the effects of tropospheric delays on the determination of short-baseline is analyzed, which depends on the orientation of baseline. The GPS measurements which include tropospheric effect and measurement noises are generated by simulation, and then rover coordinates are computed by short-baseline data processing technique. The residuals of rover coordinates are analyzed to interpret the tropospheric effect on the positioning. The results show that the magnitudes of the biases in the coordinate residuals increase as the baseline length gets longer. The increasing rate is computed as 0.07cm per meter in baseline length. Therefore, the tropospheric effects should be carefully considered in short-baseline data processing when the significant height difference between the reference and rover is observed.

A Study on the Synthetic Aperture Radar System Motion Compensation Technique (SAR(Synthetic Aperture Radar)시스템 요동보상기법 연구)

  • Kang, Eun-Kyun;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.221-229
    • /
    • 2013
  • In this paper, the image formation by the motion compensation technique for Synthetic Aperture Radar system(SAR) were realized through the computer simulation. The motion compensation technique performed image data with the range compression, the compensation procedure, the azimuth compensation and the noise elimination procedure. The range compression procedure transform the SAR raw data into the frequency domain and correlate with the range reference function and then inversely transform into the time domain. The compensation procedure contain the aircraft fluctuations compensation and the radar image degrading effect elimination procedure which was caused by image formation algorithm itself. The aircraft fluctuations compensation procedure perform the first stage which correct the phase angle and the second stage which calculate the Doppler frequency and determine the coordinate of the received signal. The radar image degrading effect elimination procedure also perform range migration compensation and the image defocussing effect compensation. The azimuth compression procedure transform the compensation data to the frequency domain and correlate with the azimuth reference function. The azimuth correlated data are inversely transformed to the time domain which is called SAR image data. When the above procedure were completed, the image data contains the received signals mixed with noise. The threshold technique was applied to elimination the noise from the mixed image data.

4-D Inversion of Geophysical Data Acquired over Dynamically Changing Subsurface Model (시간에 대해 변화하는 지하구조에서 획득한 물리탐사 자료의 역산)

  • Kim, Jung-Ho;Yi, Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.117-122
    • /
    • 2006
  • In the geophysical monitoring to understand the change of subsurface material properties with time, the time-invariant static subsurface model is commonly adopted to reconstruct a time-lapse image. This assumption of static model, however, can be invalid particularly when fluid migrates very quickly in highly permeable medium in the brine injection experiment. In such case, the resultant subsurface images may be severely distorted. In order to alleviate this problem, we develop a new least-squares inversion algorithm under the assumption that the subsurface model will change continuously in time. Instead of sampling a time-space model into numerous space models with a regular time interval, a few reference models in space domain at different times pre-selected are used to describe the subsurface structure continuously changing in time; the material property at a certain space coordinate are assumed to change linearly in time. Consequently, finding a space-time model can be simplified into obtaining several reference space models. In order to stabilize iterative inversion and to calculate meaningful subsurface images varying with time, the regularization along time axis is introduced assuming that the subsurface model will not change significantly during the data acquisition. The performance of the proposed algorithm is demonstrated by the numerical experiments using the synthetic data of crosshole dc resistivity tomography.

  • PDF

Fundamental Studies on the Quantitative Analysis of Color Preference -Reference of Twenty Ages- (색채선호의 계량적 분석에 관한 기초적 연구 -20대 연령층을 대상으로-)

  • 조동범;문석기
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.14 no.2
    • /
    • pp.69-80
    • /
    • 1986
  • In order to analyse the color preference quantitatively, specially with reference to the subjects in the age of twenties, 100 subjects(M=50, F=50) that unconsidered other factors were adopted and responded to 4 items of the questionaire. The item no. 1 was to investigate the most prefered color on the white background, no. 2 was to most preferred stimulation -level of lightness in the same hues, no. 3 was to most prefered color on 5 different backgrounds -grey, blue, pink, yellow, and yellow green-, and no. 4 was same as no. 3 but with different color-arrangement Materials for item 1 and 3 were made with transparent acryl-boards(30cm$\times$30cm), on which 16 color chips arranged on circle, for item 4 on lattice, and for item 2 with 16 white boards(8cm$\times$21cm), on which 7 color chips of different lightness-level arranged. Reflectance(Y) and color coordinate(x, y) of all color chips measured with color difference meter were transfered into wavelength(nm), exitation purity(%), and Munsell's value. The results may be summarized as follows: 1) Most prefered color was bluish green with wave1ength about 500nm. As increasing of exitation purity of color, more prefered. 2) When there were 7 different levels of lightness in the same hues, the relationship between the number of preference and the stimulation was inverted U-shaped. 3) With changing the background -color, the prefered colors were contrasting when backgrounds were low or high intensity-stimulation and familiar colors when backgrounds were medium intensity.

  • PDF

Development of a polystyrene phantom for quality assurance of a Gamma Knife®

  • Yona Choi;Kook Jin Chun;Jungbae Bahng;Sang Hyoun Choi;Gyu Seok Cho;Tae Hoon Kim;Hye Jeong Yang;Yeong Chan Seo;Hyun-Tai Chung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2935-2940
    • /
    • 2023
  • A polystyrene phantom was developed following the guidance of the International Atomic Energy Association (IAEA) for gamma knife (GK) quality assurance. Its performance was assessed by measuring the absorbed dose rate to water and dose distributions. The phantom was made of polystyrene, which has an electron density (1.0156) similar to that of water. The phantom included one outer phantom and four inner phantoms. Two inner phantoms held PTW T31010 and Exradin A16 ion chambers. One inner phantom held a film in the XY plane of the Leksell coordinate system, and another inner phantom held a film in the YZ or ZX planes. The absorbed dose rate to water and beam profiles of the machine-specific reference (msr) field, namely, the 16 mm collimator field of a GK PerfexionTM or IconTM, were measured at seven GK sites. The measured results were compared to those of an IAEA-recommended solid water (SW) phantom. The radius of the polystyrene phantom was determined to be 7.88 cm by converting the electron density of the plastic, considering a water depth of 8 g/cm2. The absorbed dose rates to water measured in both phantoms differed from the treatment planning program by less than 1.1%. Before msr correction, the PTW T31010 dose rates (PTW Freiberg GmbH, New York, NY, USA) in the polystyrene phantom were 0.70 (0.29)% higher on average than those in the SW phantom. The Exradin A16 (Standard Imaging, Middleton, WI, USA) dose rates were 0.76 (0.32)% higher in the polystyrene phantom. After msr correction factors were applied, there were no statistically significant differences in the A16 dose rates measured in the two phantoms; however, the T31010 dose rates were 0.72 (0.29)% higher in the polystyrene phantom. When the full widths at half maximum and penumbras of the msr field were compared, no significant differences between the two phantoms were observed, except for the penumbra in the Y-axis. However, the difference in the penumbra was smaller than variations among different sites. A polystyrene phantom developed for gamma knife dosimetry showed dosimetric performance comparable to that of a commercial SW phantom. In addition to its cost effectiveness, the polystyrene phantom removes air space around the detector. Additional simulations of the msr correction factors of the polystyrene phantom should be performed.

Evaluation of difference in respiratory phase between amplitude- and phase-based four-dimensional computed tomography (위상 기반 사차원전산화단층촬영과 진폭 기반 사차원전산화단층촬영 영상에서의 위상차 평가)

  • Lee, So Hyang;Park, Soo Yeon;Kim, Jong Sik;Choi, Byung Ki;Park, Hee Chul;Jung, Sang Hoon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.73-78
    • /
    • 2015
  • Purpose : Under the assumption of change to the amplitude based sorting, the study will use four dimensional computed tomography imaging (4DCT) arrayed using the phase based sorting to analyze the respiratory phase difference. Materials and Methods : The study analyzed the 4DCT (4-dimensional computed tomography) images of 10 liver cancer patients that were treated with respiratory gated radiotherapy from 2015 February to March. Using RPM respiratory gating (RPM 1.7.5, Varian, USA) equipment, imaging according to respiratory cycle of phase based sorting was acquired and using a treatment planning system (Pinnacle 9.2, Philips, USA) the acquired imaging according to respiratory cycle was used to measure the abdominal movement value by respiratory cycle. The measuring point was the point where the center point of the Marker Block and the body surface met in the 50% phase image and here the coordinate values Lateral, Vertical, Longitudinal (X, Y, Z) were set as reference points, and on the X, Z plane identical to the reference point, using the identical method the Y axis coordinate value of each 0%, 30%, 40%, 50%, 60%, 80% phase images were acquired to quantitatively measure the variation of distance to the Y axis. The abdominal movement value according to respiration was applied to the theoretical model that the value decreases linearly from maximum inhalation to maximum exhalation to divide the variation of my value to predict as amplitude value by respiratory cycle and conversely the variation in amplitude was recalculated with the phase variation deviation value to analyze. Results : The deviation value between expected value and actual location was the largest in the 30% phase with 0.24 cm, and standard deviation was also the largest in 30% phase with 0.13 cm. The effective value of the deviation value derived from the average of the deviation squared value of each patient appeared as minimum 0.7 cm, maximum 0.18 cm, average 0.12 cm, and standard deviation 0.4 cm. Also by dividing the actual movement distance value with the peak expiration value then converting it into %Phase, the deviation value with actual phase 16.5% in 30% phase, 10.0% and 40% phase, 10.0% and 60% phase, 15.4% and 80% phase, and overall average about 13%, and arraying based on amplitude, phase shift occurred and further it was from peak expiration the chance of deviation occurrence was increasingly measured. Conclusion : Based on the results of the study there were differences between value acquired based on theoretical model and actual value. Therefore in respiratory gated radiotherapy using external surrogates, there needs to be establishment of respiration gated radiation system that avoids the combination of two Sorting methods considering that there will be occurrence of treatment and corresponding clinical differences due to the phase difference that occur due to the Amplitude based Phase Sorting.

  • PDF

철도기준점을 이용한 철도중심선형 좌표변환에 관한연구 - 호남고속철도 계획노선을 중심으로 -

  • Moon, Cheung-Kyun;Heo, Joon;Kang, Sang-Du;Kim, Sang-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1141-1151
    • /
    • 2007
  • In this paper through Honam high-speed railroad which is planned with the north and south axis, we will verify the feasibility of the coordinate conversion using railroad control points after regarding current planned-railroad as the linear central axises. From analysis, distortion of Y axis varies 21cm to 40cm diminishing to a gentle straight line, distortion of X axis varies 14cm to 29cm. Through a revision, the deviation value between the coordinates were 6mm to 9mm and it satisfied the allowable error of national geographic information institute which is following ITRF (International Terrestrial Reference Frame) and cadastral boundary survey(10cm). consequently the coordinate conversion is possible using railroad control points as common control points.

  • PDF

Morphometric Study on the Arterial Palmar Arch of the Hand (손바닥 동맥활에 관한 형태계측 연구)

  • Park, Bong Kwon;Jang, Soo Won;Choi, Seung Suk;Ahn, Hee Chang
    • Archives of Plastic Surgery
    • /
    • v.36 no.6
    • /
    • pp.691-701
    • /
    • 2009
  • Purpose: Deviations of arterial palmar arches in the hand can be explained on the embryological basis. The purpose of this study was to provide new information about palmar arches through cadaver's dissection. The values of the location and diameter in these vessels were analyzed in order to support anatomical research and clinical correlation in the hand. Methods: The present report is based on an analysis of dissections of fifty - three hands carried out in the laboratory of gross anatomy. A reference line was established on the distal wrist crease to serve as the X coordinate and a perpendicular line drawn through the midpoint between middle and ring fingers, which served as the Y coordinate. The coordinates of the x and y values were measured by a digimatic caliper, and statistically analyzed with Student's t - test. Results: Complete superficial palmar archs were seen in 96.2 % of specimens. In the most common type of males, the superficial arch was formed only by the ulnar artery. In the most common type of females, the superficial arch was formed anastomosis between the radial artery and the ulnar artery. The average length of the superficial and deep palmar arch is $110.3{\pm}33.0mm$ and $67.9{\pm}14.0mm$ respectively. Regarding the superficial palmar arch, ulnar artery starts $-16.1{\pm}5.1mm$ on X - line, and $2.5{\pm}24.5mm$ on Y - line. Radial artery appears on palmar side $7.7{\pm}3.2mm$ on X - line, and $20.9{\pm}10.9mm$ on Y - line. But radial artery starts on $6.3{\pm}3.6mm$ on X - line, and $3.4{\pm}5.1mm$ on Y - line. Digital arteries of superficial palmar arch starts on $6.1{\pm}3.7mm$, $33.9{\pm}8.8mm$ on index finger, $1.8{\pm}3.4mm$, $40.1{\pm}7.3mm$ on middle finger, $-3.2{\pm}4.9mm$, $42.6{\pm}7.0mm$ on ring finger, and $-8.9{\pm}5.1mm$, $42.5{\pm}80mm$ on little finger in respective X and Y coordinates. Radial artery of deep palmar arches measured at the palmar side perforating from the dorsum of hand. It's coordinates were $9.7{\pm}4.8mm$ on X - line, $21.7{\pm}10.2mm$ on Y - line. Ulnar artery was measured at hypothenar area, and it's coordinates were $-20.4{\pm}6.3mm$ on X - line, and $30.6{\pm}7.4mm$ on Y - line. Conclusions: Anatomically superficial palmar arch can be divided into a complete and an incomplete type. Each of them can be subdivided into 4 types. The deep palmar arch is less variable than the superficial palmar arch. We believe these values of the study will be used for the vascular surgery of the hand using the endoscope and robot in the future.

Registration of Three-Dimensional Point Clouds Based on Quaternions Using Linear Features (선형을 이용한 쿼터니언 기반의 3차원 점군 데이터 등록)

  • Kim, Eui Myoung;Seo, Hong Deok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.175-185
    • /
    • 2020
  • Three-dimensional registration is a process of matching data with or without a coordinate system to a reference coordinate system, which is used in various fields such as the absolute orientation of photogrammetry and data combining for producing precise road maps. Three-dimensional registration is divided into a method using points and a method using linear features. In the case of using points, it is difficult to find the same conjugate point when having different spatial resolutions. On the other hand, the use of linear feature has the advantage that the three-dimensional registration is possible by using not only the case where the spatial resolution is different but also the conjugate linear feature that is not the same starting point and ending point in point cloud type data. In this study, we proposed a method to determine the scale and the three-dimensional translation after determining the three-dimensional rotation angle between two data using quaternion to perform three-dimensional registration using linear features. For the verification of the proposed method, three-dimensional registration was performed using the linear features constructed an indoor and the linear features acquired through the terrestrial mobile mapping system in an outdoor environment. The experimental results showed that the mean square root error was 0.001054m and 0.000936m, respectively, when the scale was fixed and if not fixed, using indoor data. The results of the three-dimensional transformation in the 500m section using outdoor data showed that the mean square root error was 0.09412m when the six linear features were used, and the accuracy for producing precision maps was satisfied. In addition, in the experiment where the number of linear features was changed, it was found that nine linear features were sufficient for high-precision 3D transformation through almost no change in the root mean square error even when nine linear features or more linear features were used.