• Title/Summary/Keyword: Reference coordinate

Search Result 286, Processing Time 0.025 seconds

Detection Method of Human Face, Facial Components and Rotation Angle Using Color Value and Partial Template (컬러정보와 부분 템플릿을 이용한 얼굴영역, 요소 및 회전각 검출)

  • Lee, Mi-Ae;Park, Ki-Soo
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.465-472
    • /
    • 2003
  • For an effective pre-treatment process of a face input image, it is necessary to detect each of face components, calculate the face area, and estimate the rotary angle of the face. A proposed method of this study can estimate an robust result under such renditions as some different levels of illumination, variable fate sizes, fate rotation angels, and background color similar to skin color of the face. The first step of the proposed method detects the estimated face area that can be calculated by both adapted skin color Information of the band-wide HSV color coordinate converted from RGB coordinate, and skin color Information using histogram. Using the results of the former processes, we can detect a lip area within an estimated face area. After estimating a rotary angle slope of the lip area along the X axis, the method determines the face shape based on face information. After detecting eyes in face area by matching a partial template which is made with both eyes, we can estimate Y axis rotary angle by calculating the eye´s locations in three dimensional space in the reference of the face area. As a result of the experiment on various face images, the effectuality of proposed algorithm was verified.

A study on real time inspection of OLED protective film using edge detecting algorithm (Edge Detecting Algorithm을 이용한 OLED 보호 필름의 Real Time Inspection에 대한 연구)

  • Han, Joo-Seok;Han, Bong-Seok;Han, Yu-Jin;Choi, Doo-Sun;Kim, Tae-Min;Ko, Kang-Ho;Park, Jung-Rae;Lim, Dong-Wook
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.14-20
    • /
    • 2020
  • In OLED panel production process, it is necessary to cut a part of protective film as a preprocess for lighting inspection. The current method is to recognize only the fiducial mark of the cut-out panel. Bare Glass Cutting does not compensate for machining cumulative tolerances. Even though process defects still occur, it is necessary to develop technology to solve this problem because only the Align Mark of the panel that has already been cut is used as the reference point for alignment. There is a lot of defective lighting during panel lighting test because the correct protective film is not cut on the panel power and signal application pad position. In laser cutting process to remove the polarizing film / protective film / TSP film of OLED panel, laser processing is not performed immediately after the panel alignment based on the alignment mark only. Therefore, in this paper, we performed real time inspection which minimizes the mechanism tolerance by correcting the laser cutting path of the protective film in real time using Machine Vision. We have studied calibration algorithm of Vision Software coordinate system and real image coordinate system to minimize inspection resolution and position detection error and edge detection algorithm to accurately measure edge of panel.

A Study of Korean Skull Base Height - with Special Reference to the MIA Sample during the Korean War and the Late Chosun Sample - (한국인 머리뼈 밑면 높이 연구 - 조선후기인골(17-18세기)과 6.25전사자를 중심으로 -)

  • Park, Sun-Joo
    • The Korean Journal of Quaternary Research
    • /
    • v.21 no.1
    • /
    • pp.37-45
    • /
    • 2007
  • Skull base height increases significantly with better nutrition and health conditions. With coordinate caliper or by subtraction, skull base height is easily measured. To examine nutrition and health condition of MIA(missing in action) during the Korean War and people who lived during the 17-18 centry of the Late Chosun. This study is focused on the change of skull base height through time as seen in comparing 83 MIA cranium and 12 17-18 centry cranium of Korea with 219 modern American middle class adult cranium(Terry Collection and forensic skeleton). To sum up, nutritional condition of MIA is not significantly changed, as seen in comparing with nutritional condition of 17-18 century people.

  • PDF

A Novel Al-Bridged Trinuclear Iron(II) Bis(imino)pyridyl Complex with Catalytic Ethylene Polymerization Behavior

  • Long, Zerong;Li, Zhongquan;Ma, Ning;Wu, Biao
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2537-2543
    • /
    • 2011
  • A self-assembled Al-bridged diiminopyridine-based ligand (3) was synthesized and characterized by FT-IR, ESI-MS and NMR spectroscopy. Electron spectral titrations were performed to confirm the formation of a novel trinuclear bis(imino)pyridyl iron(II) complex (4) upon addition of $FeCl_2$ into Al-bridged ligand 3 in methanol solution. Simultaneously, a typical bis(imino)pyridine-iron(II) complex (2) was synthesized and fully characterized. The X-ray crystal study of the iron(II) complex 2 disclosed a five-coordinate, distorted square-pyramidal structure with the tridentate N^N^N ligand and chlorides. The optimal molecular structure of 4 was obtained by means of molecular mechanics, which showed that each iron atom in the complex 4 is surrounded by two chlorides, a tridentate N^N^N ligand and one oxygen atom, supporting considerations about the possibility of six-coordinate geometry from MMAO or the ethylene access. A comparison of 4 with the reference 2 revealed a remarkable decrease of the catalytic activity and MMAO consumption (activity up to $0.41{\times}10^3\;kg\;{mol_{Fe}}^{-1}h^{-1}bar^{-1}$, Al/Fe = 650 for 4 and $7.02{\times}10^3\;kg\;{mol_{Fe}}^{-1}h^{-1}bar^{-1}$, Al/Fe = 1600 for 2).

Application of the Expansion Method for Spherical Harmonics for Computation of Two Center Overlap Integrals (Ⅱ) (Two Center Overlap Integrals의 계산을 위한 Spherical Hamonics 전개방법의 응용 (제2보))

  • Oh Se Woung;Ahn Sangwoon
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.125-131
    • /
    • 1979
  • A method for calculation of two center overlap integrals for a pair of Slater type orbitals was developed by Mulliken et al. In this method the spherical polar coordinates for a pair of Slater type orbitals located at two different points are required to be transformed into a spheroidal coordinate set for calculation of two center overlap integrals. A new method, the expansion method for spherical harmonics, in which Slater type orbitals, located at two different points, are expressed in a common coordinate system has been applied for computation of two center overlap integrals. The new method for computation of two center overlap integrals is required to translate Slater type orbitals centered at two different points into the reference point for computation of two center overlap integrals. This work has been expanded the expansion method for spherical harmonics for computation of two center overlap integrals to $|3s{\g}$, $|5s{\g}$ and $|5s{\g}$. Master formulas for two center overlap integrals are derived for these orbitals, using the general expansion formulas. The numerical values of the two center overlap integrals evaluated for a hypothetical NO molecule are in agreement with those of the previous works.

  • PDF

Design and Implementation of Frontal-View Algorithm for Smartphone Gyroscopes (스마트폰 자이로센서를 이용한 Frontal-View 변환 알고리즘 설계 및 구현)

  • Cho, Dae-Kyun;Park, Seok-Cheon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.199-206
    • /
    • 2012
  • Attempt to use as a marker of natural objects directly in the real world, but there is a way to use the accelerometer of the smartphone, to convert the Frontal-View virtual, because it asks only the pitch of the camera, from the side there is a drawback that can not be converted to images. The proposed algorithm, to obtain the rotation matrix of axis 3 pitch, roll, yaw, we set the reference point of the yaw of the target image. Then, to compensate for the rotation matrix to determine Myon'inji any floor, wall, the ceiling of the target image. Finally, to obtain the homography matrix for obtaining the Frontal-View to account for the difference between the gyro sensor coordinate system and image coordinate system, so we can get the Frontal-View from the captured images through the projection transformation was designed. Was tested to convert Frontal-View the picture was taken in an environment smartphone environment surrounding floor, walls and ceiling in order to evaluate the conversion program Frontal-View has been implemented, in this paper, design and The conversion algorithm implementation, it was confirmed that to convert a regular basis Frontal-View footage taken from multiple angles.

Touch-Trigger Probe Error Compensation in a Machining Center (공작기계용 접촉식 측정 프로브의 프로빙 오차 보상에 관한 연구)

  • Lee, Chan-Ho;Lee, Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.661-667
    • /
    • 2011
  • Kinematic contact trigger probes are widely used for feature inspection and measurement on coordinate measurement machines (CMMs) and computer numerically controlled (CNC) machine tools. Recently, the probing accuracy has become one of the most important factors in the improvement of product quality, as the accuracy of such machining centers and measuring machines is increasing. Although high-accuracy probes using strain gauge can achieve this requirement, in this paper we study the universal economic kinematic contact probe to prove its probing mechanism and errors, and to try to make the best use of its performance. Stylus-ball-radius and center-alignment errors are proved, and the probing error mechanism on the 3D measuring coordinate is analyzed using numerical expressions. Macro algorithms are developed for the compensation of these errors, and actual tests and verifications are performed with a kinematic contact trigger probe and reference sphere on a CNC machine tool.

An Analysis of the Accuracy of Reference Points in Cadastral Area Using GPS (위성측량을 이용한 지적기준점의 정확도 분석)

  • Kang, In-Joon;Choi, Jong-Bong;Kwak, Jae-Ha;Choi, Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.1
    • /
    • pp.39-46
    • /
    • 2002
  • This paper shows what is point to be considered at that time in cadastral settlement surveying after declination analysis between GPS and traditional surveying at coordinate result of cadastral triangulation points and supplementary point in site selected deplaning of streets which is surveyed traditional surveying. In the case that coordinates of cadastral triangulation assistance points was decided by standard of the existing cadastral triangulation points that direction of the error vector is in opposition, authors could know all errors was reduced inside coordinate by error being offset each other through the results of study. The coordinates result of cadastral triangulation point by standard of the cadastral triangulation points reduces the deviation value through error that an intersection points was centered being offset each other but through the result that a tendency of errors occurrence is analyzed goniometrys, supplementary points that is close to cadastral triangulation assistance points was affected by error of cadastral triangulation assistance points.

The Real-Time Height Measurement through a Geometry Information and 0bject Extraction (기하학 정보와 객체 추출을 통한 실시간 높이 측정)

  • Kim Jong Su;Kim Tae Yong;Choi Jong Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1652-1659
    • /
    • 2004
  • In this paper, we propose the algorithm that automatically measures the height of the object to move on the base plane by using the geometric information. To extract a moving object from real-time images creates the background image and each pixel is modeled by the three values. The extracted region is represented by cardboard model and calculates the coordinate center in the each part. The top and bottom point of an object are extracted by the calculated coordinate center and an iterative computation. The two points, top and bottom, are used for measuring the height. Given the vanishing line of the ground plane, the vertical vanishing point, and at least one reference height in the scene; then the height of any point from the ground may be computed by specifying the image of the point and the image of the vertical intersection with the ground plane at that point. Through a confidence valuation of the height to be measured, we confirmed similar actual height and result in the simulation experiment.

Correction on Current Measurement Errors for Accurate Flux Estimation of AC Drives at Low Stator Frequency (저속영역에서 교류전동기의 정확한 자속추정을 위한 전류측정오차 보상)

  • Cho, Kyung-Rae;Seok, Jul-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.65-73
    • /
    • 2007
  • This paper presents an on-line correction method of current measurement errors for a pure-integration-based flux estimation down to 1-Hz stator frequency. An observer-based approach is taken as one possible solution of eliminating the dc offset and the negative sequence component of unbalanced gains in the synchronous coordinate. At the same time, the positive sequence component estimation is performed by creating an error signal between a motor model reference and an estimated q-axis rotor flux established by a permanent magnet (PM) in the synchronous coordinate. The compensator utilizes a PI controller that controls the error signal to zero. The proposed technique further contains a residual error compensator to completely eliminate miscellaneous disturbances in the estimated flux. The developed algorithm has been implemented on a 1.1-kW permanent magnet synchronous motor (PMSM) drive to confirm the effectiveness of the proposed scheme.