한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
/
pp.715-721
/
2000
In this research, rule and neuro net based boundary extraction algorithm was developed. Extracting boundary of the interest, lean tissue, is essential for the quality evaluation of the beef based on color machine vision. Major quality features of the beef are size, marveling state of the lean tissue, color of the fat, and thickness of back fat. To evaluate the beef quality, extracting of loin parts from the sectional image of beef rib is crucial and the first step. Since its boundary is not clear and very difficult to trace, neural network model was developed to isolate loin parts from the entire image input. At the stage of training network, normalized color image data was used. Model reference of boundary was determined by binary feature extraction algorithm using R(red) channel. And 100 sub-images(selected from maximum extended boundary rectangle 11${\times}$11 masks) were used as training data set. Each mask has information on the curvature of boundary. The basic rule in boundary extraction is the adaptation of the known curvature of the boundary. The structured model reference and neural net based boundary extraction algorithm was developed and implemented to the beef image and results were analyzed.
본 논문에서는 3D 콘텐츠 생성 시 필요한 깊이 영상의 화질 개선을 위하여 잡음 제거 기법과 홀 채움 기법을 제안한다. 제안하는 기법에서는 컬러 영상과 깊이 영상을 모두 이용하게 된다. 먼저 입력된 컬러 영상을 RGB 색상계에서 HSI 색상계로 변환하여 밝기 영상을 생성한다. 그리고 깊이 영상에서 기준 화소와 주변 화소간의 거리 값, 깊이 값의 차이를 구하고 컬러 영상의 밝기 값 차이를 계산하여 제안하는 잡음 제거 기법에 이용한다. 이후 홀을 탐색하여 홀과 주변 화소간의 거리, 컬러 영상의 밝기 값 차이를 제안하는 홀 채움 기법을 적용하여 깊이 영상 내에 존재하는 홀을 채우게 된다. 마지막으로 실시간 환경에 적용하기 위하여 제안하는 기법을 GPU로 병렬화하여 속도 향상을 하고자 하였다. 실험을 통하여 제안한 기법이 기존 기법에서 발생하는 경계 부분의 흐려짐 현상을 줄이면서 홀을 채우는 것을 확인하였다.
Jo, Jieun;Im, Jaehyun;Jang, Jinbeum;Yoo, Yoonjong;Paik, Joonki
IEIE Transactions on Smart Processing and Computing
/
제5권6호
/
pp.383-389
/
2016
This paper presents a novel automatic white balance (AWB) algorithm for consumer imaging devices. While existing AWB methods require reference white patches to correct color, the proposed method performs the AWB function using only an input image in two steps: i) white point detection, and ii) color constancy gain computation. Based on the dark channel prior assumption, a white point or region can be accurately extracted, because the intensity of a sufficiently bright achromatic region is higher than that of other regions in all color channels. In order to finally correct the color, the proposed method computes color constancy gain values based on the Y component in the XYZ color space. Experimental results show that the proposed method gives better color-corrected images than recent existing methods. Moreover, the proposed method is suitable for real-time implementation, since it does not need a frame memory for iterative optimization. As a result, it can be applied to various consumer imaging devices, including mobile phone cameras, compact digital cameras, and computational cameras with coded color.
본 논문에서는 야외 및 실내에서 촬영된 차량 영상에 대해 실시간으로 차량 색상을 인식할 수 있는 GPU(Graphics Processing Unit) 기반의 알고리즘을 제시한다. 전처리 과정에서는 차량 색상의 표본 영상들로부터 특징벡터를 계산한 뒤, 이들을 색상 별로 조합하여 GPU에서 사용할 참조 텍스쳐(Reference texture)로 저장한다. 차량 영상이 입력되면, 특징벡터를 계산한 뒤 GPU로 전송하고, GPU에서는 참조 텍스쳐 내의 표본 특징리터들과 비교하여 색상 별 유사도를 측정한 뒤 CPU로 전송하여 해당 색상명을 인식한다. 분류의 대상이 되는 색상은 가장 흔히 발견되는 차량 색상들 중에서 선택한 7가지 색상이며, 검정색, 은색, 흰색과 같은 3가지의 무채색과 빨강색, 노랑색, 파랑색, 녹색과 같은 4가지의 유채색으로 구성된다. 차량 영상에 대한 특징벡터는 차량 영상에 대해 HSI(Hue-Saturation-Intensity) 색상모델을 적용하여 색조-채도 조합과 색조-명도 조합으로 색상 히스토램을 구성하고, 이 중의 채도 값에 가중치를 부여함으로써 구성한다. 본 논문에서 제시하는 알고리즘은 다양한 환경에서 촬영된 많은 수의 표본 특징벡터를 사용하고, 색상 별 특성을 뚜렷이 반영하는 특징벡터를 구성하였으며, 적합한 유사도 측정함수(likelihood function)를 적용함으로써, 94.67%에 이르는 색상 인식 성공률을 보였다. 또한, GPU를 이용함으로써 대량의 표본 특징벡터의 집합과 입력 영상에 대한 특징벡터 간의 유사도 측정 및 색상 인식과정을 병렬로 처리하였다. 실험에서는, 색상 별로 1,024장씩, 총 7,168장의 차량 표본 영상을 이용하여 GPU에서 사용하는 참조 텍스쳐를 구성하였다. 특징벡터의 구성에 소요되는 시간은 입력 영상의 크기에 따라 다르지만, 해상도 $150{\times}113$의 입력 영상에 대해 측정한 결과 평균 0.509ms가 소요된다. 계산된 특징벡터를 이용하여 색상 인식의 수행시간을 계산한 결과 평균 2.316ms의 시간이 소요되었고, 이는 같은 알고리즘을 CPU 상에서 수행한 결과에 비해 5.47배 빠른 속도이다. 본 연구에서는 차량만을 대상으로 하여 색상 인식을 실험하였으나, 일반적인 피사체의 색상 인식에 대해서도 제시된 알고리즘을 확장하여 적용할 수 있다.
본 논문에서는 한 장의 칼라 영상을 형성시키는 광원의 색온도를 추정하는 새로운 방법을 제안한다. 주어진 한 장의 칼라 영상으로부터 광원의 색도 좌표를 계산하는데 필요한 R,G,B 값이 특정한 칼라에 편향되지 않는 기준 백색 영역을 추출한다. 추출된 기준 백색 영역 내에서 계산된 (x,y) 색도 좌표로부터 등 색온도선을 이용하여 최종적으로 주어진 칼라 영상을 형성시키는 광원의 색온도를 추정한다. 캐나다 Simon Fraser 대학에서 제공되는 205장의 영상을 이용하여 제안된 방법과 기존 방법들을 비교 실험한 결과로부터 제안된 방법으로 추정한 색온도가 상대적으로 작은 오차를 나타냄을 확인하였다.
In this study, the colors and characteristics of Gwangbok-ro of Busan were analyzed in the standpoint of local images based on the examination of the facade designs of stores along the road of Gwangbok-ro, Busan a main street with massive population flow. To that end, the facades of stores, correlation with the city, color and locality were examined, and after the status of facade designs in Gwangbok-ro were identified through case survey by it, color images were analyzed. For color analysis, Munsell color system was used as basic tool. As a result of examining the colors in Gwangbok-ro area, the following status could be analyzed on 3 attributes of hue, brightness and chroma: First, analysis results of hue indicated that dominant color that covers 70% or more of the area represented mid brightness and low chroma in GY(36.1%) series, subsidiary color which covers 25% or more of the area mid brightness and low chroma in YR(26.5%) series, and accent color that covers less than 5% of the area high brightness and low chroma of GY(40%) series. Second, in brightness analysis, dominant color mostly represented mid brightness, subsidiary color mid brightness and accent color high brightness respectively. In particular accent color showed more intensive crowding phenomenon in high brightness. Third, as for chroma, dominant color, subsidiary color and accent color all are gathered in low chroma, however in small number of accent colors, peculiar high chroma appeared notable. In conclusion, the colors of Gwangbok-ro area analyzed based on the facade design of the stores along the road in this study were superficial colors that reflect the life of people in the area, artificial colors by improvement of the local environment. This study is meaningful in that the image of Gwangbok-ro was found through building colors in one part of the city Busan. It is judged that the study results would become useful as reference document in planning out environment colors later on.
PURPOSE. The aim of this study was to define a color space of non-vital teeth and to compare it with the color space of matched vital teeth, recorded in the same patients. MATERIALS AND METHODS. In a group of 218 patients, with the age range from 17 to 70, the middle third of the buccal surface of 359 devitalized teeth was measured using a clinical spectrophotometer (Vita Easyshade Advance). Lightness ($L^*$), chromatic parameters ($a^*$, $b^*$), chroma ($C^*$), hue angle (h) and the closest Vita shade in Classical and 3D Master codifications were recorded. For each patient, the same data were recorded in a vital reference tooth. The measurements were performed by the same operator with the same spectrophotometer, using a standardized protocol for color evaluation. RESULTS. The color coordinates of non-vital teeth varied as follows: lightness $L^*$: 52.83-92.93, $C^*$: 8.23-58.90, h: 51.20-101.53, $a^*$: -2.53-24.80, $b^*$: 8.10-53.43. For the reference vital teeth, the ranges of color parameters were: $L^*$: 60.90-97.16, $C^*$: 8.43-39.23, h: 75.30-101.13, $a^*$: -2.36-9.60, $b^*$: 8.36-39.23. The color differences between vital and non-vital teeth depended on tooth group, but not on patient age. CONCLUSION. Non-vital teeth had a wider color space than vital ones. Non-vital teeth were darker (decreased lightness), more saturated (increased chroma), and with an increased range of the hue interval. An increased tendency towards positive values on the $a^*$ and $b^*$ axes suggested redder and yellower non-vital teeth compared to vital ones.
This paper presents a method for conversion of muscular sense into both visual and auditory senses based on synesthetic perception. Muscular sense can be defined by rotation angles, direction changes and motion degrees of human body. Synesthetic interconversion can be made by learning, so that it can be possible to create intentional synesthetic phenomena. In this paper, the muscular sense was converted into both color and sound signals which comprise the great majority of synesthetic phenomena. The measurement of muscular sense was performed by using the AHRS(attitude heading reference system). Roll, yaw and pitch signals of the AHRS were converted into three basic elements of color as well as sound, respectively. The proposed method was finally applied to a wearable device, Samsung gear S, successfully.
물체컬러식별 임베디드시스템을 프로세서 기반으로 구현하고 물체를 식별 분류하는 무인물류관리 시스템을 제한한다. 임베디드시스템 구현은 초음파 센서를 이용하여 물체의 유무와 거리를 추출하고 USB CCD 카메라로부터 이진영상을 획득한다. 영상식별 알고리듬은 입력영상에 대해 컬러 검출한 패턴을 기준패턴과 비교 식별하여 지정된 랙에 이동 저장한다. 실험결과 무인화 창고관리 로봇기능으로 실용가능성을 제시하였다.
한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
/
pp.1224-1227
/
2009
When evaluating the quality of images and displays, it is important to combine the characteristics as perceived by the human visual system and measured by equipment using subjective and objective methods, respectively. In the case of objective methods, the quality of a display is measured using colorimetric or radiometric devices according to existing standards covering the color temperature, gamut size, gamma characteristic, and device characterization. Meanwhile, subjective methods assess the quality of an image using the human visual system based on a comparison with a reference or counterpart using such metrics as the sharpness, noise, contrast, saturation, and color accuracy. Objective and subjective methods are usually used together in comparison, as ultimately it is observers watching images on a display. In addition to existing objective methods, a new image quality metric is also introduced as regards the JPEG compression ratio that is reflected in the relationship between the gamut size and the color fidelity in CIELAB color space.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.