• Title/Summary/Keyword: Reference Temperature

Search Result 1,264, Processing Time 0.152 seconds

Research on the Operation of Safeguards Equipment in Extreme Environmental Conditions (극한 환경 내 안전조치 장비 운영에 관한 연구)

  • Jiyoung Han;Suhui Park;Jewan Park;Yongmin Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1189-1195
    • /
    • 2023
  • In scenarios involving inspections and verifications of nuclear facilities, ensuring the proper functioning of on-site safeguards equipment is crucial. There have been precedents in Kazakhstan where equipment failed to operate properly due to extremly cold temperatures, and the year-round minimum temperature at North Korea's Punggye-ri nuclear test site is approximately minus 30 degrees Celsius. To ensure the proper functioning of equipment in extreme environments for on-site verification of nuclear activities on the Korean Peninsula, relevant research is necessary. This includes confirming the functionality of equipment used in inspections and verifications, as well as analyzing factors that may disrupt their normal operation. This study aims to conduct a risk analysis for the normal operation of equipment in extreme environments and develop criteria and procedures for environmental-based performance testing. To achieve this, we conducted a risk analysis based on IAEA safeguards, analyzed the utilization of equipment, and performed a risk analysis associated with transportation for on-site verification considering the environmental characteristics of the Korean Peninsula. Furthermore, we provided performance testing criteria and procedures. The research results can be utilized as reference material in the verification and monitoring processes of nuclear activities.

Evaluation of Site-specific Potential for Rice Production in Korea under the Changing Climate (지구온난화에 따른 우리나라 벼농사지대의 생산성 재평가)

  • Chung, U-Ran;Cho, Kyung-Sook;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.229-241
    • /
    • 2006
  • Global air temperature has risen by $0.6^{\circ}C$ over the last one hundred years due to increased atmospheric greenhouse gases. Moreover, this global warming trend is projected to continue in the future. This study was carried out to evaluate spatial variations in rice production areas by simulating rice-growth and development with projected high resolution climate data in Korea far 2011-2100, which was geospatially interpolated from the 25 km gridded data based on the IPCC SRES A2 emission scenario. Satellite remote sensing data were used to pinpoint the rice-growing areas, and corresponding climate data were aggregated to represent the official 'crop reporting county'. For the simulation experiment, we used a CERES-Rice model modified by introducing two equations to calculate the leaf appearance rate based on the effective temperature and existing leaf number and the final number of leaves based on day-length in the photoperiod sensitive phase of rice. We tested the performance of this model using data-sets obtained from transplanting dates and nitrogen fertilization rates experiments over three years (2002 to 2004). The simulation results showed a good performance of this model in heading date prediction [$R^2$=0.9586 for early (Odaebyeo), $R^2$=0.9681 for medium (Hwasungbyeo), and $R^2$=0.9477 for late (Dongjinbyeo) maturity cultivars]. A modified version of CERES-Rice was used to simulate the growth and development of three Japonica varieties, representing early, medium, and late maturity classes, to project crop status for climatological normal years between 2011 and 2100. In order to compare the temporal changes, three sets of data representing 3 climatological years (2011-2040, 2041-2070, and 2071-2100) were successively used to run the model. Simulated growth and yield data of the three Japonica cultivars under the observed climate for 1971-2000 was set as a reference. Compared with the current normal, heading date was accelerated by 7 days for 2011-2040 and 20 days for 2071-2100. Physiological maturity was accelerated by 15 days for 2011-2040 and 30 days for 2071-2100. Rice yield was in general reduced by 6-25%, 3-26%, and 3-25% per 10a in early, medium, and late maturity classes, respectively. However, mid to late maturing varieties showed an increased yield in northern Gyeonggi Province and in most of Kwangwon Province in 2071-2100.

Distribution and Changes of Amino Acids and Related Compounds in the Muscle Extract of the Right-eye Flounder during Heat Treatment (가자미류 육엑스분중의 아미노산 및 그 관련화합물의 분포와 가열조건에 따른 변화)

  • Moon, Soo-Kyung;An, Mi-Jeung;Han, Young-Sil;Pyeun, Jae-Hyung
    • Korean journal of food and cookery science
    • /
    • v.6 no.3 s.12
    • /
    • pp.43-50
    • /
    • 1990
  • Distribution of amino acids and related compounds in the muscle extract of seven species of right-eye flounder (spotted halibut, slime flounder, marbled sole, sand flounder, stone flounder, frog fleunder and bastard halibut) were studied. The effect of heat treatment on quantitative change in the composition of amino acids and related compounds in the extract of sand fleunder muscle was also investigated since the sand flounder has much Ex-nitrogen in the extract of the muscle. The content of crude protein and that of pure protein were in the range of $17.54{\sim}19.99%$ and $15.63{\sim}17.95%$, respectively. Among the extracts of the seven fish muscle, stone flounder showed the highest content of Ex-nitrogen(2.12%). In the muscle extracts of the seven fish taurine was abundantly contained $(29.4{\sim}56.9%)$, and followed alanine $(6.6{\sim}10.4%)$ and glycine $(1.6{\sim}16.7%)$. The compositions of amino acids and related compounds were characterized by the existence of phosphoethanolamine, ${\alpha}-aminoadipic\;acid$, DL-allocystathionine, ethanolamine and ornithine. The experiments on amino acids and related compounds of the muscle extract of sand flounder with reference to heating time and temperature were resulted in that the amount of taurine, tyrosine, leucine and alanine were increased with the heating time at $100^{\circ}C$, whereas that of lysine, histidine, ${\alpha}-aminoadipic\;acid$ and proline were decreased with prolonged heating time. When heating temperature was changed from $90^{\circ}C$ to $130^{\circ}C$ for 60 min, the contents of taurine, alanine and leucine were increased, while that of histidine, lysine and aspartic acid were decreased.

  • PDF

Study of Ecological Response of Endangered Sarcandra glabra (Thunb.) Nakai according to Moisture and Nutrient under Condition of Climate Change for Propagation and Restoration (증식 및 복원을 위한 기후변화조건에서 수분과 유기물에 따른 멸종위기식물 죽절초(Sarcandra glabra (Thunb.) Nakai)의 생태적 반응 연구)

  • Lee, Soo-In;Lee, Eung-Pill;Jung, Young-Ho;Kim, Eui-Ju;Lee, Jae-Keun;Lee, Seung-Yeon;Park, Jae-Hoon;Lee, Sang-Hun;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.1
    • /
    • pp.30-38
    • /
    • 2018
  • The purpose of this paper is to provide reference data about propagation, restoration, and preparation of policy of endangered Sarcandra glabra (Thunb.) Nakai by investigating growth response and variation of ecological niche breadth according to moisture and nutrient under the condition of elevated $CO_2$ concentration and elevated temperature. We divided the investigation into the controlled group and treated group (elevated $CO_2$ concentration and elevated temperature) and then varied the moisture and nutrient treatment for testing. The results showed that the ecological niche breadth was wide at moisture and nutrient gradients of 0.899 and 0.844, respectively, under control. Also, the ecological niche breadth regarding the moisture and nutrient gradients under treatment simulating global warming was wider as 6.60% and 2.09%, respectively. Therefore, moisture and nutrient will not be the restriction factors concerning the growth of Sarcandra glabra under continued global warming. However, it will be advisable to specify the nutrient content condition in the soil to be 10% for population restoration when growing Sarcandra glabra in the green house which is not affected by external environment since the studies of rearing reaction reported that Sarcandra glabra prefer 10% of nutrient content than 0-5%. Furthermore, it is necessary to protect evergreen broad-leaved forest where is the natural habitat of Sarcandra glabra that has relatively high nutrient content.

Analysis of Spatial Correlation between Surface Temperature and Absorbed Solar Radiation Using Drone - Focusing on Cool Roof Performance - (드론을 활용한 지표온도와 흡수일사 간 공간적 상관관계 분석 - 쿨루프 효과 분석을 중심으로 -)

  • Cho, Young-Il;Yoon, Donghyeon;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1607-1622
    • /
    • 2022
  • The purpose of this study is to determine the actual performance of cool roof in preventing absorbed solar radiation. The spatial correlation between surface temperature and absorbed solar radiation is the method by which the performance of a cool roof can be understood and evaluated. The research area of this study is the vicinity of Jangyu Mugye-dong, Gimhae-si, Gyeongsangnam-do, where an actual cool roof is applied. FLIR Vue Pro R thermal infrared sensor, Micasense Red-Edge multi-spectral sensor and DJI H20T visible spectral sensor was used for aerial photography, with attached to the drone DJI Matrice 300 RTK. To perform the spatial correlation analysis, thermal infrared orthomosaics, absorbed solar radiation distribution maps were constructed, and land cover features of roof were extracted based on the drone aerial photographs. The temporal scope of this research ranged over 9 points of time at intervals of about 1 hour and 30 minutes from 7:15 to 19:15 on July 27, 2021. The correlation coefficient values of 0.550 for the normal roof and 0.387 for the cool roof were obtained on a daily average basis. However, at 11:30 and 13:00, when the Solar altitude was high on the date of analysis, the difference in correlation coefficient values between the normal roof and the cool roof was 0.022, 0.024, showing similar correlations. In other time series, the values of the correlation coefficient of the normal roof are about 0.1 higher than that of the cool roof. This study assessed and evaluated the potential of an actual cool roof to prevent solar radiation heating a rooftop through correlation comparison with a normal roof, which serves as a control group, by using high-resolution drone images. The results of this research can be used as reference data when local governments or communities seek to adopt strategies to eliminate the phenomenon of urban heat islands.

Estimation of High Resolution Sea Surface Salinity Using Multi Satellite Data and Machine Learning (다종 위성자료와 기계학습을 이용한 고해상도 표층 염분 추정)

  • Sung, Taejun;Sim, Seongmun;Jang, Eunna;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.747-763
    • /
    • 2022
  • Ocean salinity affects ocean circulation on a global scale and low salinity water around coastal areas often has an impact on aquaculture and fisheries. Microwave satellite sensors (e.g., Soil Moisture Active Passive [SMAP]) have provided sea surface salinity (SSS) based on the dielectric characteristics of water associated with SSS and sea surface temperature (SST). In this study, a Light Gradient Boosting Machine (LGBM)-based model for generating high resolution SSS from Geostationary Ocean Color Imager (GOCI) data was proposed, having machine learning-based improved SMAP SSS by Jang et al. (2022) as reference data (SMAP SSS (Jang)). Three schemes with different input variables were tested, and scheme 3 with all variables including Multi-scale Ultra-high Resolution SST yielded the best performance (coefficient of determination = 0.60, root mean square error = 0.91 psu). The proposed LGBM-based GOCI SSS had a similar spatiotemporal pattern with SMAP SSS (Jang), with much higher spatial resolution even in coastal areas, where SMAP SSS (Jang) was not available. In addition, when tested for the great flood occurred in Southern China in August 2020, GOCI SSS well simulated the spatial and temporal change of Changjiang Diluted Water. This research provided a potential that optical satellite data can be used to generate high resolution SSS associated with the improved microwave-based SSS especially in coastal areas.

Analysis on Statistical Characteristics of Household Water End-uses (가정용수 용도별 사용량의 통계적 특성 분석)

  • Kim, Hwa Soo;Lee, Doo Jin;Park, No Suk;Jung, Kwan Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.603-614
    • /
    • 2008
  • End-uses of household water have been changed by a life style, housing type, weather, water rate and water supply facilities etc. and those variables can be considered as an internal and exogenous factors to estimate long-term demand forecasts. Analysis of influential factors on water consumption in households would give an explanation to cause on the change of trend and would help predicting the water demand of end-use in household. The purpose of this study is to analyze the demand trends and patterns of household water uses by metering and questionnaire such as occupation, revenue, numbers of family member, housing types, age, floor area and installation of water saving device, etc. The peak water uses were shown at Saturday among weekdays and July in a year based on the analysis results of water use pattern. A steep increase of total water volume can be found in the analysis of water demand trend according to temperature from $-14^{\circ}C$ to $0^{\circ}C$, while there are no significant variations in the phase of more than $0^{\circ}C$, with an almost stable demand. Washbowl water shows the highest and toilet water shows the lowest relation with temperature in correlation analysis results. In the results of ANOVA to find the significant difference in each unit water use by exogenous factors such as housing type, occupation, number of generation, residential area and income et al., difference was shown in bathtub water by housing type and shown in kitchen, toilet and miscellaneous water by numbers of resident. Especially, definite differences in components except washbowl and bathtub water, could be found by numbers of resident. Based on the result, average residents in a house should be carefully considered and the results can be applied as reference information, in decision making process for predicting water demand and establishing water conservation policy. It is expected that these can be used as design factors in planning stage for water and wastewater facilities.

Satellite-Based Cabbage and Radish Yield Prediction Using Deep Learning in Kangwon-do (딥러닝을 활용한 위성영상 기반의 강원도 지역의 배추와 무 수확량 예측)

  • Hyebin Park;Yejin Lee;Seonyoung Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1031-1042
    • /
    • 2023
  • In this study, a deep learning model was developed to predict the yield of cabbage and radish, one of the five major supply and demand management vegetables, using satellite images of Landsat 8. To predict the yield of cabbage and radish in Gangwon-do from 2015 to 2020, satellite images from June to September, the growing period of cabbage and radish, were used. Normalized difference vegetation index, enhanced vegetation index, lead area index, and land surface temperature were employed in this study as input data for the yield model. Crop yields can be effectively predicted using satellite images because satellites collect continuous spatiotemporal data on the global environment. Based on the model developed previous study, a model designed for input data was proposed in this study. Using time series satellite images, convolutional neural network, a deep learning model, was used to predict crop yield. Landsat 8 provides images every 16 days, but it is difficult to acquire images especially in summer due to the influence of weather such as clouds. As a result, yield prediction was conducted by splitting June to July into one part and August to September into two. Yield prediction was performed using a machine learning approach and reference models , and modeling performance was compared. The model's performance and early predictability were assessed using year-by-year cross-validation and early prediction. The findings of this study could be applied as basic studies to predict the yield of field crops in Korea.

Classification of Carbon-Based Global Marine Eco-Provinces Using Remote Sensing Data and K-Means Clustering (K-Means Clustering 기법과 원격탐사 자료를 활용한 탄소기반 글로벌 해양 생태구역 분류)

  • Young Jun Kim;Dukwon Bae;Jungho Im ;Sihun Jung;Minki Choo;Daehyeon Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1043-1060
    • /
    • 2023
  • An acceleration of climate change in recent years has led to increased attention towards 'blue carbon' which refers to the carbon captured by the ocean. However, our comprehension of marine ecosystems is still incomplete. This study classified and analyzed global marine eco-provinces using k-means clustering considering carbon cycling. We utilized five input variables during the past 20 years (2001-2020): Carbon-based Productivity Model (CbPM) Net Primary Production (NPP), particulate inorganic and organic carbon (PIC and POC), sea surface salinity (SSS), and sea surface temperature (SST). A total of nine eco-provinces were classified through an optimization process, and the spatial distribution and environmental characteristics of each province were analyzed. Among them, five provinces showed characteristics of open oceans, while four provinces reflected characteristics of coastal and high-latitude regions. Furthermore, a qualitative comparison was conducted with previous studies regarding marine ecological zones to provide a detailed analysis of the features of nine eco-provinces considering carbon cycling. Finally, we examined the changes in nine eco-provinces for four periods in the past (2001-2005, 2006-2010, 2011-2015, and 2016-2020). Rapid changes in coastal ecosystems were observed, and especially, significant decreases in the eco-provinces having higher productivity by large freshwater inflow were identified. Our findings can serve as valuable reference material for marine ecosystem classification and coastal management, with consideration of carbon cycling and ongoing climate changes. The findings can also be employed in the development of guidelines for the systematic management of vulnerable coastal regions to climate change.

Predicting Potential Habitat for Hanabusaya Asiatica in the North and South Korean Border Region Using MaxEnt (MaxEnt 모형 분석을 통한 남북한 접경지역의 금강초롱꽃 자생가능지 예측)

  • Sung, Chan Yong;Shin, Hyun-Tak;Choi, Song-Hyun;Song, Hong-Seon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.5
    • /
    • pp.469-477
    • /
    • 2018
  • Hanabusaya asiatica is an endemic species whose distribution is limited in the mid-eastern part of the Korean peninsula. Due to its narrow range and small population, it is necessary to protect its habitats by identifying it as Key Biodiversity Areas (KBAs) adopted by the International Union for Conservation of Nature (IUCN). In this paper, we estimated potential natural habitats for H. asiatica using maximum entropy model (MaxEnt) and identified candidate sites for KBA based on the model results. MaxEnt is a machine learning algorithm that can predict habitats for species of interest unbiasedly with presence-only data. This property is particularly useful for the study area where data collection via a field survey is unavailable. We trained MaxEnt using 38 locations of H. asiatica and 11 environmental variables that measured climate, topography, and vegetation status of the study area which encompassed all locations of the border region between South and North Korea. Results showed that the potential habitats where the occurrence probabilities of H. asiatica exceeded 0.5 were $778km^2$, and the KBA candidate area identified by taking into account existing protected areas was $1,321km^2$. Of 11 environmental variables, elevation, annual average precipitation, average precipitation in growing seasons, and the average temperature in the coldest month had impacts on habitat selection, indicating that H. asiatica prefers cool regions at a relatively high elevation. These results can be used not only for identifying KBAs but also for the reference to a protection plan for H. asiatica in preparation of Korean reunification and climate change.