• 제목/요약/키워드: Reference Instrument

검색결과 178건 처리시간 0.026초

Adaptive Extraction Method for Phase Foreground Region in Laser Interferometry of Gear

  • Xian Wang;Yichao Zhao;Chaoyang Ju;Chaoyong Zhang
    • Current Optics and Photonics
    • /
    • 제7권4호
    • /
    • pp.387-397
    • /
    • 2023
  • Tooth surface shape error is an important parameter in gear accuracy evaluation. When tooth surface shape error is measured by laser interferometry, the gear interferogram is highly distorted and the gray level distribution is not uniform. Therefore, it is important for gear interferometry to extract the foreground region from the gear interference fringe image directly and accurately. This paper presents an approach for foreground extraction in gear interference images by leveraging the sinusoidal variation characteristics shown by the interference fringes. A gray level mask with an adaptive threshold is established to capture the relevant features, while a local variance evaluation function is employed to analyze the fluctuation state of the interference image and derive a repair mask. By combining these masks, the foreground region is directly extracted. Comparative evaluations using qualitative and quantitative assessment methods are performed to compare the proposed algorithm with both reference results and traditional approaches. The experimental findings reveal a remarkable degree of matching between the algorithm and the reference results. As a result, this method shows great potential for widespread application in the foreground extraction of gear interference images.

임상보고 가능범위의 실증적 연구 (An Empirical Study of the Clinically Reportable Range in Clinical Chemistry)

  • 장상우;이상곤;최호성;송은영;박용원;이인애
    • 대한임상검사과학회지
    • /
    • 제39권1호
    • /
    • pp.31-36
    • /
    • 2007
  • The purpose of the clinically reportable range (CRR) in clinical chemistry is to estimate linearity in working range. The reportable range includes all results that may be reliably reported, and embraces two types of ranges: the analytical measurement range (AMR) is the range of analyte values that a method can directly measure on the specimen without any dilution, concentration, or other pretreatment not part of the usual assay process. CAP and JCAHO require linearity on analyzers every six months. The clinically reportable range is the range of analyte values that a method can measure, allowing for specimen dilution, concentration, or other pretreatment used to extend the direct analytical measurement range. The AMR cannot exceed the manufacturer's limits. Establishing AMR is easily accomplished with Calibration Verification Assessment and experimental Linearity. For example: The manufacturer states that the limits of the AST on their instrument are 0-1100. The lowest level that could be verified is 2. The upper level is 1241. The verified AMR of the instrument is 2-1241. The lower limit of the range is 2, because that is the lowest level that could be verified by the laboratory. The laboratory could not use the manufacturer's lower limit of 2 because they have not proven that the instrument values below 2 are valid. The upper limit of the range is 1241, because although the lab has shown that the instrument is linear to 1241, the manufacturer does not make that claim. The laboratory needs to demonstrate the accuracy and precision of the analyzer, as well the validation of the patient AMR. Linearity requirements have been eliminated from the CLIA regulations and from the CAP inspection criteria, however, many inspectors continue to feel that linearity studies are a part of good lab practice and should be encouraged. If a lab chooses to continue linearity studies, these studies must fully comply with the calibration/calibration verification requirements of CLIA and/or CAP. The results of lower limit and upper limit of clinically reportable range were total protein (2.1 - 79.9), albumin (1.3 - 39), total bilirubin (0.2 - 106.2), alkaline phosphatase (13 - 6928.2), aspartate aminotransferase (24 - 7446), alanine aminotransferase (13 - 6724.2), gamma glutamyl transpeptidase (16.64 - 9904.2), creatine kinase (15.26 - 4723.8), lactate dehydrogenase (127.66 - 13231.8), creatinine (0.4 - 129.6), blood urea nitrogen (8.67 - 925.8), uric acid (1.6 - 151.2), total cholesterol (48.52 - 3162), triglycerides (36.91 - 3367.8), glucose (31 - 4218), amylase (21 - 6694.2), calcium (3.1 - 118.2), inorganic phosphorus (1.11 - 108), HDL (11.74 - 666), NA (58.3 - 1800), K (1.0 - 69.6), CL (38 - 1230).

  • PDF

표준준기에 의한 일사계 교정 (Thermopile Radiometer Calibration Using Reference Instrument)

  • 조덕기;윤창열;김광득;강용혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.199.2-199.2
    • /
    • 2010
  • The main purpose of the calibration procedure is to perform a one to one comparison of the reference pyranometer and the test pyranometer. In order to achieve this, both pyranometers need to be exposed to exactly the same irradiance, under the same circumstances. There are a number of error sources that could result in a wrong measurement. Most importantly Lamp instability, pyranometer offsets, thermal offsets of junctions, voltmeter offset, voltmeter instability, reference pyranometer instability, tilting of the pyranometers and differences in sensor height. Another sun-disc calibration procedure compares the computed vertical component of the direct irradiance as measured by a pyranometer with that measured by the pyranometer to be calibrated. Readings are taken with the levelled pyranometer on a clear day. Firstly the global irradiance and then the diffuse component are measured. Simultaneously measurement of direct irradiance is made with the pyrheliometer. The ways of performing the calibration and the subsequent calculation have been chosen such that the effect all these error sources has been eliminated as much as possible.

  • PDF

Measurements of the rheological properties of standard reference material 2490 using an in-line micro-Fourier rheometer

  • Smith R. S.;Glasscock J. A.
    • Korea-Australia Rheology Journal
    • /
    • 제16권4호
    • /
    • pp.169-173
    • /
    • 2004
  • The control of the rheological properties of a fluid during processing is important and can determine the efficiency of the production in addition to the performance of the final product. The vast majority of process fluids are viscoelastic, hence an instrument that measures both the viscous and elastic properties of the material during processing would be of great practical use. However, most in-line instruments commercially available to date are only capable of measuring viscosity at a single shear rate. An in-line rheometer that measures both the viscous and elastic properties of fluids over a wide range of shear rates simultaneously has been described in a previous publication (Glasscock et at., 2003) in which the results of measurements on flowing sunflower oil were presented. Before this instrument can be used in an industrial situation, it must be demonstrated that the generated results are the same as, or bear some fixed relationship to, the results obtained by conventional off-line rheometers. To this end, the present investigation describes the measurements of a standard reference fluid, polyisobutylene dissolved in 2,6,10,14-tetramethylpentadecane, labelled SRM2490 by the National Institute of Standards and Technology (NIST) in the USA. The results obtained using the in-line rheometer show remarkably good correlation for viscosity, using a modified Cox­Merz rule, with the results supplied with the reference material from NIST.

3차원 계측장치를 이용한 길 원형의 여유량 분석 (Analysis of the Ease in Basic Bodice Pattern Using 3-D Measuring Instrument)

  • 심규남;서정권;이원자
    • 한국의류산업학회지
    • /
    • 제2권3호
    • /
    • pp.239-245
    • /
    • 2000
  • The purpose of this study was for analysis of ease about basic bodice pattern, as the first step of the research process for the drawing method of basic bodice for women in their twenties. The five selected basic bodice were made and they were worn by FRP body The garment space of each bodice was measured by analysis of the garment space of each section in figure of polymerization of cross section by a 3-D measuring instrument. The research suggests that this compared analysis is an objective reference. This analysis not only of the area of cross section of garment space and ease but also of the girth of the body shape and wearing shape, using the PAD system and 3-D measuring instrument, can be helpful in making garment patterns.

  • PDF

THE EFFECT OF ATMOSPHERIC SCATTERING AS INFERRED FROM THE ROCKET-BORNE UV RADIOMETER MEASUREMENTS

  • Kim, Jhoon
    • Journal of Astronomy and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.87-93
    • /
    • 1997
  • Radiometers in UV and visible wavelengths were onboard the Korean Sounding Rocket(KSR)-1 and 2 which were launched on June 4th and September 1st, 1993. These radiometers were designed to capture the solar radiation during the ascending period of the rocket flight. The purpose of the instrument was to measure the vertical profiles of stratospheric ozone densities. Since the instrument measured the solar radiation from the ground to its apogee, it is possible to investigate the altitude variation of the measured intensity and to estimate the effect of atmospheric scattering by comparing the UV and visible intensity. The visible channel was a reference because the 450-nm wavelength is in the atmospheric window region, where the solar radiation is transmitted through the atmosphere without being absorbed by other atmospheric gases. The use of 450-nm channel intensity as a reference should be limited to the altitude ranges above the certain altitudes, say 20 to 25km where the signals are not perturbed by atmospheric scattering effects.

  • PDF

Measurement of Thermal Conductivity of Foods in Liquid and Solid Phase Using a Thermal Probe

  • Hong, Ji-Hyang;Han, Young-Joe;Chung, Jong-Hoon
    • Food Science and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.334-339
    • /
    • 2005
  • An instrument using thermal probe method was designed to measure thermal conductivity of liquid and solid foods. Thermal conductivity probe was designed with diameter to length ratio of 100 and diameter of 0.51 mm to minimize axial flow effect on thermal conductivity measurement. Thermal conductivities of distilled/deionized water, glycerin, and beef frankfurter meat were measured at $20-80^{\circ}C$. Mean thermal conductivity values of water showed less than 2.0% difference from several reference values without using time correction factor or probe calibration constant. For glycerin, difference was less than 0.7% from reference values at $20-50^{\circ}C$. Mean values of thermal conductivity for beef frankfurter meat ranged from 0.389 to $0.350\;W/m{\cdot}K$ at $20-80^{\circ}C$.

다목적 수동형 라돈농도 측정기 개발 (Development of A Multipurpose Passive Type Radon Monitor)

  • 이봉재;박영웅
    • 동위원소회보
    • /
    • 제21권4호
    • /
    • pp.55-65
    • /
    • 2006
  • A passive type radon monitor adopting two silicon PIN detector as radiation detector has been developed, manufactured and test-evaluated. A radiation signal processing circuit has been electronically tested and then the radiation detection characteristics of this instrument has been performance-tested by using reference radon concentration and a reference photon radiation field. As a result, in a electronic performance test, radiation signals from each detector were well observed in each signal processing circuit. The radiation detection sensitivity of this instrument after several test-irradiations to a Cs-137 gamma radiation source and a standard radon concentration appeared to be 1.37 cph/$\mu$Svh-1 and 1.66 pCi/L respectively. The developed radon monitor in this paper could be used conveniently in monitoring of radon concentration in buildings which population utilize in Korea.

  • PDF

기계시각을 이용한 분무입자크기 측정 (Machine Vision Instrument to Measure Spray Droplet Sizes)

  • 전홍영;티안레이
    • Journal of Biosystems Engineering
    • /
    • 제35권6호
    • /
    • pp.443-449
    • /
    • 2010
  • A machine vision-based instrument to measure a droplet size spectrum of a spray nozzle was developed and tested to evaluate its accuracy on measuring spray droplet sizes and classifying nozzle sizes. The instrument consisted of a machine vision, light emitting diode (LED) illumination and a desktop computer. The illumination and machine vision were controlled by the computer through a C++ program. The program controlled the machine vision to capture droplet images under controlled illumination, and processed the droplet images to characterize the droplet size distribution of a spray nozzle. An image processing algorithm was developed to improve the accuracy of the system by eliminating random noise and out-of-focus droplets in droplet images while measuring droplet sizes. The instrument measured sizes of the three different balls (254.0, 497.8 and $793.8\;{\mu}m$) and the measurement ranges were $241.2-273.6\;{\mu}m$, $492.9-529.6\;{\mu}m$ and $800.8-824.1\;{\mu}m$ for 254.0-, 497.84- and $793.75-\;{\mu}m$ balls, respectively. Error of the measured droplet mean was less than 3.0 %. Droplet statistics, $D_{V0.1}$, $D_{V0.5}$ and $D_{V0.9}$, of a reference nozzle set were measured, and droplet size spectra of five spray nozzles covering from very fine to extremely coarse were measured to classify spray nozzle sizes. Ninety percent of the classification results of the instrument agreed with manufacturer's classification. A comparison study was carried out between developed and commercial instruments, and measurement results of the developed instrument were within 20 % of commercial instrument results.

표면분석용 인증표준물질의 개발 I : 표면조성분석용 합금박막 표준물질 (Development of certified reference material (CRM)s for surface analysis I : alloy thin film for surface compositional analysis)

  • 김경중;박용섭;문대원
    • 한국진공학회지
    • /
    • 제8권3B호
    • /
    • pp.276-282
    • /
    • 1999
  • For the quantitative surface analysis of multicomponent materials, algorithms for the compensation of the matrix effect and surface compositional change by ion beam sputtering must be established and reference materials having certified compositions are necessary. These certified reference material (CRM)s are needed for the improvement of instrument performance, inter-laboratory comparison and quantitative surface analysis. Surface analysis group of KRISS developed alloy thin film CRMs by and ion beam sputter deposition system and in-situ surface analysis system to control the composition of alloy thin films The real compositions of the CRMs were certified by inductively coupled plasma-atomic emission spectroscopy (ICP-AES).

  • PDF