• Title/Summary/Keyword: Redundancy design

Search Result 335, Processing Time 0.021 seconds

Design parameter dependent force reduction, strength and response modification factors for the special steel moment-resisting frames

  • Kang, Cheol Kyu;Choi, Byong Jeong
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.273-290
    • /
    • 2011
  • In current ductility-based earthquake-resistant design, the estimation of design forces continues to be carried out with the application of response modification factors on elastic design spectra. It is well-known that the response modification factor (R) takes into account the force reduction, strength, redundancy, and damping of structural systems. The key components of the response modification factor (R) are force reduction ($R_{\mu}$) and strength ($R_S$) factors. However, the response modification and strength factors for structural systems presented in design codes were based on professional judgment and experiences. A numerical study has been accomplished to evaluate force reduction, strength, and response modification factors for special steel moment resisting frames. A total of 72 prototype steel frames were designed based on the recommendations given in the AISC Seismic Provisions and UBC Codes. Number of stories, soil profiles, seismic zone factors, framing systems, and failure mechanisms were considered as the design parameters that influence the response. The effects of the design parameters on force reduction ($R_{\mu}$), strength ($R_S$), and response modification (R) factors were studied. Based on the analysis results, these factors for special steel moment resisting frames are evaluated.

Performance-based Design of 300 m Vertical City "ABENO HARUKAS"

  • Hirakawa, Kiyoaki;Saburi, Kazuhiro;Kushima, Souichirou;Kojima, Kazutaka
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.35-48
    • /
    • 2014
  • In designing a 300 meter high skyscraper expected to be the tallest building in Japan, an earthquake-ridden country, we launched on the full-scale performance based design to ensure redundancy and establish new specifications using below new techniques. The following new techniques are applied because the existing techniques/materials are not enough to meet the established design criteria for the large-scale, irregularly-shaped building, and earth-conscious material saving and construction streamlining for reconstructing a station building are also required: ${\bullet}$ High strength materials: Concrete filled steel tube ("CFT") columns made of high-strength concrete and steels; ${\bullet}$ New joint system: Combination of outer diaphragm and aluminium spray jointing; ${\bullet}$ Various dampers including corrugated steel-plate walls, rotational friction dampers, oil dampers, and inverted-pendulum adaptive tuned mass damper (ATMD): Installed as appropriate; and ${\bullet}$ Foundation system: Piled raft foundation, soil cement earth-retaining wall construction, and beer bottle shaped high-strength CFT piles.

Direct displacement based design of hybrid passive resistive truss girder frames

  • Shaghaghian, Amir Hamzeh;Dehkordi, Morteza Raissi;Eghbali, Mahdi
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.691-708
    • /
    • 2018
  • An innovative Hybrid Passive Resistive configuration for Truss Girder Frames (HPR-TGFs) is introduced in the present study. The proposed system is principally consisting of Fluid Viscous Dampers (FVDs) and Buckling Restrained Braces (BRBs) as its seismic resistive components. Concurrent utilization of these devices will develop an efficient energy dissipating mechanism which is able to mitigate lateral displacements as well as the base shear, simultaneously. However, under certain circumstances which the presence of FVDs might not be essential, the proposed configuration has the potential to incorporate double BRBs in order to achieve the redundancy of alternative load bearing paths. This study is extending the modern Direct Displacement Based Design (DDBD) procedure as the design methodology for HPR-TGF systems. Based on a series of nonlinear time history analysis, it is demonstrated that the design outcomes are almost identical to the pre-assumed design criteria. This implies that the ultimate characteristics of HPR-TGFs such as lateral stiffness and inter-story drifts are well-proportioned through the proposed design procedure.

A universal design method using 3 Point task analysis and 9 universal design items

  • Yamaoka, Toshiki
    • Science of Emotion and Sensibility
    • /
    • v.5 no.2
    • /
    • pp.63-72
    • /
    • 2002
  • In order to examine universal design, 1 have developed two analytical methodologies based on 3P(point) task analysis: structured task analysis and task matrix analysis. I also extracted nine universal design items, namely (1) adjustment, (2) redundancy, (3) specification and function transparency, (4) feedback and (5) error tolerance, (6) effective acquisition of information, (7) ease of understanding and judgment, (8) comfortable operation, and (9) continuity of information and operation. Structured task analysis is used to uncover problems in each of the tasks constituting a job for each functionally challenged condition of users, and solutions to the extracted problems are examined in terms of the above-mentioned nine universal design items. Task matrix analysis calls for the production of a table for each task in a job. In each table, nine items form the columns, and the horizontal rows list all disability types. Then, solutions are formulated for each cell formed by the intersecting columns and rows. Using these two analysis methods, 1 have conducted a verification experiment for the universal design of a public bus. The results of the research have enabled me to propose various ,solutions from a system-based perspective, instead of coming up with the superficial and isolated solutions which are normally produced when conventional analytical methods are used.

  • PDF

Resilience Allocation for Resilient Engineered System Design (복원가능 시스템 설계를 위한 복원도 할당)

  • Youn, Byeng-D.;Hu, Chao;Wang, Pingfeng;Yoon, Joung-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1082-1089
    • /
    • 2011
  • Most engineered systems are designed with high levels of system redundancies to satisfy required reliability requirements under adverse events, resulting in high systems' LCCs (Life-Cycle Costs). Recent years have seen a surge of interest and tremendous advance in PHM (Prognostics and Health Management) methods that detect, diagnose, and predict the effects of adverse events. The PHM methods enable proactive maintenance decisions, giving rise to adaptive reliability. In this paper, we present a RAP (Resilience Allocation Problem) whose goal is to allocate reliability and PHM efficiency to components in an engineering context. The optimally allocated reliability and PHM efficiency levels serve as the design specifications for the system RBDO (Reliability-Based Design Optimization) and the system PHM design, which can be used to derive the detailed design of components and PHM units. The RAP is demonstrated using a simplified aircraft control actuator design problem resulting in a highly resilient actuator with optimally allocated reliability, PHM efficiency and redundancy for the given parameter settings.

A Study on The Process of Design Idea - Focused on An Expansion and A Diversity of Idea (디자인 아이디어 전개에 관한 연구 - 사고의 확장성과 다의성을 중심으로)

  • 이한성
    • Archives of design research
    • /
    • v.17 no.2
    • /
    • pp.67-76
    • /
    • 2004
  • The main stream of consumption about the products is tend to transfer from low price value with mass production, to the second value of products, such as pleasure, familiarity, humor, and metaphor. This second value is closely connected to a redundancy which are also related to modern science as well as product design. These terms such as matrials, identity, and gravitation, disappeared gradually, and these are substituted with an uncertainty principle, a fortuity, a contradictory concept, entropy etc. In sum this study focuses on the tendency of intelligency issue the recent design trends. This result shows that The 4th Column Thinking and Formation System which is related to an expansion and diversity of design intellectual ideas.

  • PDF

A universal design method using 3 Point task analysis and 9 universal design items

  • Yamaoka, Toshiki
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.144-151
    • /
    • 2002
  • In order to examine universal desist I have developed two analytical methodologies based on 3P(point) task analysis: structured task analysis and task matrix analysis. I also extracted me universal design items, namely (1) adjustment (2) redundancy, (3) specification and function transparency, (4) feedback and (5) error tolerance, (6) effective acquisition of information, (7) ease of understanding and judgment (8) comfortable operation, and (9) continuity of information and operation. Structured task analysis is used to uncover problems in each of the tasks constituting a job for each functionally challenged condition of users, and solutions to the extracted problems are examined in terms of the above-mentioned nine universal design items. Task matrix analysis calls for the production of a table for each task in a job. In each table, nine items from the columns, and the horizontal rows list all disability types. Then, solutions are formulated for each cell formed by the intersecting columns and rows. Using these two analysis methods, T have conducted a verification experiment for the universal design of a public bus. The results of the research have enabled me to propose various solutions from a system-based perspective, instead of coming up with the superficial and isolated solutions which are normally produced when conventional analytical methods are used.

  • PDF

Design of LCL Filter through Inductor Optimization Method in Grid-Connected Inverter (계통연계 인버터의 인덕터 최적화 기법을 통한 LCL 필터 설계)

  • Jang, Jae-Ha;Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.58-67
    • /
    • 2014
  • A grid-connected inverter used for renewable energy resources produces harmonic components in the switching frequency. To effectively reduce switching harmonic components, several types of filter are generally used in the output stage of the grid-connected inverter. Many research works on LCL filter design have been done to maintain the performance with low cost. However, it is not easy to make the filter design be economical and optimal due to the varying characteristic of magnetic core and redundancy design by experience. In this paper, a design method for a LCL filter is presented through the inductor optimization scheme in view of the size and cost when the inductor is manufactured using the magnetic core. The effectiveness is verified through tests using a 3kW grid-connected inverter by simulations and experiments.

Fault Tolerant Actuator for Steer-By-Wire Application

  • Mutschler P.;Krautstrunk A.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.741-745
    • /
    • 2001
  • Reliability and safety of steer-by-wire concepts can be achieved by redundant designs. This paper discusses the design of a fault tolerant concept for a force feedback actuator with a standard three-phase PMSM. In contrast to usual drives, the phases of the machine are separated electrically. This design allows driving the machine with two instead of three phases in case of a fault. A superimposed torque controller adjusts the influence of fault currents and torque harmonics in two-phase operation and guarantees smooth torque at the steering wheel

  • PDF

An RP Data Exchange Model Based on STEP (STEP을 이용한 신속조형용 설계정보 변환체계)

  • 이병열;지해성
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.1
    • /
    • pp.48-58
    • /
    • 2001
  • One of the biggest problems of rapid prototyping(RP) technologies lies in their standard file format for CAD data exchange. Current methods using the de facto industry standard 'STL'have at times resulted in problems such as accuracy, redundancy, and integrity. In this paper we propose a STEP based data exchange framework for rapid prototyping systems. In this paradigm of data exchange, STEP models can be imported and converted into faceted B-rep. solid models for visualization and 2-D layer data for RP. Also an STL model, on the other hand, can be converted into a faceted B-rep. STEP model and exported as a new data exchange model with RP information.

  • PDF