• Title/Summary/Keyword: Reduction of stiffness

Search Result 826, Processing Time 0.033 seconds

Numerical Analysis of the Flow in a Compliant Tube Considering Fluid-wall Interaction (벽-유체의 상호작용을 고려한 유연관 내부 유동의 수치적 연구)

  • 심은보
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.391-401
    • /
    • 2000
  • Flow through compliant tubes with linear taper in wall thickness is numerically simulated by finite element analysis. For verification of the numerical method, flow through a compliant stenotic vessel is simulated and the results are compared to the existing experimental data. Steady two-dimensional flow in a collapsible channel with initial tension is also simulated and the results are compared with numerical solutions from the literature. Computational results show that as cross-sectional area decreases with the reduction in downstream pressure, flow rate increases and reaches the maximum when the speed index (mean velocity divided by wave speed) is near the unity at the point of minimum cross-section area, indicating the flow limitation or choking (flow speed equals wave speed) in one-dimensional studies. for further reductions in downstream pressure, flow rate decreases. The flow limitation or choking consist of the main reasons of waterfall effect which occurs in the airways, capillaries of lung, and other veins. Cross-sectional narrowing is significant but localized. When the ratio of downstream-to-upstream wall thickness is 2, the area throat is located near the downstream end. As this ratio is increased to 3, the constriction moves to the upstream end of the tube.

  • PDF

Analytical Study on Flexural Behavior of Concrete Member using Heavyweight Waste Glass as Fine Aggregate (고밀도 폐유리를 잔골재로 사용한 RC 부재의 휨거동에 관한 해석적 연구)

  • Cha, Kyoung-Moon;Choi, So-Yoeng;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.88-96
    • /
    • 2020
  • It were found that the heavyweight waste glass can be used as a construction materials including concrete from previous experimental studies. In this study, in order to evaluate the structural behavior of RC members using heavyweight waste glass as fine aggregate, a flexural behavior test was performed. And then, its results were compared with those obtained from non-linear finite element model analysis. From the results, when the heavyweight waste glass as fine aggregate in RC member, the area of compressive crushing and the number of cracks increased, however, the mean of cracking spacing decreased. Also it had reduced the ductility at high loading stage. For this reason, the same analysis method about the RC member using natural sand as fine aggregate did not predict the initial stiffness, yield load and maximum load on the flexural behavior of the RC members using heavyweight waste glass as fine aggregate. On the other hand, when it is analytically implemented the reduction of neutral axis depth due to developed compression crushing, the results of non-linear finite element analysis could be predicted the experimental results, relatively well.

Baseline Model Updating and Damage Estimation Techniques for Tripod Substructure (트라이포드 하부구조물의 기저모델개선 및 결함추정 기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.218-226
    • /
    • 2020
  • An experimental study was conducted on baseline model updating and damage estimation techniques for the health monitoring of offshore wind turbine tripod substructures. First, a procedure for substructure health monitoring was proposed. An initial baseline model for a scaled model of a tripod substructure was established. A baseline model was updated based on the natural frequencies and the mode shapes measured in the healthy state. A training pattern was then generated using the updated baseline model, and the damage was estimated by inputting the modal parameters measured in the damaged state into the trained neural network. The baseline model could be updated reasonably using the effective fixity model. The damage tests were performed, and the damage locations could be estimated reasonably. In addition, the estimated damage severity also increased as the actual damage severity increased. On the other hand, when the damage severity was relatively small, the corresponding damage location was detected, but it was more difficult to identify than the other cases. Further studies on small damage estimation and stiffness reduction quantification will be needed before the presented method can be used effectively for the health monitoring of tripod substructures.

Age-related Changes of the Finger Photoplethysmogram in Frequency Domain Analysis (연령증가에 따른 지첨용적맥파의 주파수 영역에서의 변화)

  • Nam, Tong-Hyun;Park, Young-Bae;Park, Young-Jae;Shin, Sang-Hoon
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.12 no.1
    • /
    • pp.42-62
    • /
    • 2008
  • Objectives: It is well known that some parameters of the photoplethysmogram (PPG) acquired by time domain contour analysis can be used as markers of vascular aging. But the previous studies that have been performed for frequency domain analysis of the PPG to date have provided only restrictive and fragmentary information. The aim of the present investigation was to determine whether the harmonics extracted from the PPG using a fast Fourier transformation could be used as an index of vascular aging. Methods: The PPG was measured in 600 recruited subjects for 30 second durations, To grasp the gross age-related change of the PPG waveform, we grouped subjects according to gender and age and averaged the PPG signal of one pulse cycle. To calculate the conventional indices of vascular aging, we selected the 5-6 cycles of pulse that the baseline was relatively stable and then acquired the coordinates of the inflection points. For the frequency domain analysis we performed a power spectral analysis on the PPG signals for 30 seconds using a fast Fourier transformation and dissociated the harmonic components from the PPG signals. Results: A final number of 390 subjects (174 males and 216 females) were included in the statistical analysis. The normalized power of the harmonics decreased with age and on a logarithmic scale reduction of the normalized power in the third (r=-0.492, P<0.0001), fourth (r=-0.621, P<0.0001) and fifth harmonic (r=-0.487, P<0.0001) was prominent. From a multiple linear regression analysis, Stiffness index, reflection index and corrected up-stroke time influenced the normalized power of the harmonics on a logarithmic scale. Conclusions: The normalized harmonic power decreased with age in healthy subjects and may be less error prone due to the essential attributes of frequency domain analysis. Therefore, we expect that the normalized harmonic power density can be useful as a vascular aging marker.

  • PDF

A study on the comparison by the methods of estimating the relaxation load of SEM-pile (SEM파일의 이완하중 산정방법별 이완하중량 비교 연구)

  • Kim, Hyeong-Gyu;Park, Eun-Hyung;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.543-560
    • /
    • 2018
  • With the increased development in downtown underground space facilities that vertically cross under a railway at a shallow depth, the demand for non-open cut method is increasing. However, most construction sites still adopt the pipe roof method, where medium and large diameter steel pipes are pressed in to form a roof, enabling excavation of the inside space. Among the many factors that influence the loosening region and loads that occur while pressing in steel pipes, the size of the pipe has the largest impact, and this factor may correspond to the magnitude of load applied to the underground structure inside the steel pipe roof. The super equilibrium method (SEM) has been developed to minimize ground disturbance and loosening load, and uses small diameter pipes of approximately 114 mm instead of conventional medium and large diameter pipes. This small diameter steel pipe is called an SEM pile. After SEM piles are pressed in and the grouting reinforcement is constructed, a crossing structure is pressed in by using a hydraulic jack without ground subsidence or heaving. The SEM pile, which plays the role of timbering, is a fore-poling pile of approximately 5 m length that prevents ground collapse and supports surface load during excavation of toe part. The loosening region should be adequately calculated to estimate the spacing and construction length of the piles and stiffness of members. In this paper, we conducted a comparative analysis of calculations of loosening load that occurs during the press-in of SEM pile to obtain an optimal design of SEM. We analyzed the influence of factors in main theoretical and empirical formulas applied for calculating loosening regions, and carried out FEM analysis to see an appropriate loosening load to the SEM pile. In order to estimate the soil loosening caused by actual SEM-pile indentation and excavation, a steel pipe indentation reduction model test was conducted. Soil subsidence and soil loosening were investigated quantitatively according to soil/steel pipe (H/D).

The Short Term Clinical Follow-up Study for Hemiarthroplasty in Proximal Humeral Fracture (상완골 근위부 분쇄 골절에서의 상완골 두 치환술의 단기 추시 결과)

  • Sung, Chang-Meen;Cho, Se-Hyun;Jung, Soon-Taek;Hwang, Sun-Chul;Park, Hyung-Bin
    • Clinics in Shoulder and Elbow
    • /
    • v.10 no.1
    • /
    • pp.92-98
    • /
    • 2007
  • Introduction: The treatment of proximal humeral fracture is traditionally determined by Neer's classification system. The severely displaced three-part or four-part fracture is an indication for primary hemiarthroplasty. The current authors report the clinical results of 10 patients who received hemiarthroplasty for proximal comminuted fractures. The minimum follow-up period was 12 months. Materials and Methods: The current authors studied 10 patients who, between July 1999 and March 2005, each received hemiarthroplasty for a proximal humeral fracture of one shoulder. According to Neer's classification system, 5 of the patients had three-part fractures, and 5 of the patients had 4-part fractures. The mean interval between trauma and hemiarthroplasty was 6.1 days. The mean age of the 6 female and 4 male patients was 67.4 years(range: 56 to 76). Shoulder function was evaluated using the Constant score, the Simple Shoulder Test, and the modified UCLA score. Results: The mean Constant score was 51.4(range: 34 to 60). The mean modified SST score was 7.8 out of 12 tasks. Excluding the one patient who had also sustained an axillary artery rupture and a brachial plexus injury after the initial trauma, the mean Constant score for the remaining 9 patients was 53.5(range: 44 to 60), and the mean SST score was 7.2 tasks. The modified UCLA score averages for pain, function, and active forward flexion and strength were, respectively, 8.2($6{\sim}10$), 6.6($2{\sim}8$), and 6.9($4{\sim}8$). The total UCLA score was an average of 21.7($12{\sim}26$). Patients' the modified UCLA ratings were as follows: Excellent: 3, Good: 6, and Poor: 1. The patient with the poor outcome was the one who had also sustained the neurovascular injury. Patient's subjective satisfaction rating were as follows: Excellent: 2, Good: 7, and Poor: 1. Conclusion: Based on short term follow-up results, this study indicates that hemiarthroplasty is the treatment of choice for proximal humeral fractures on which it would be difficult to perform open reduction and internal fixation. Hemiarthroplasty is a useful treatment modality to prevent shoulder stiffness and to allow daily living tasks in elderly patients. However, restoration of muscle power and range of joint motion were not recovered satisfactorily.