• Title/Summary/Keyword: Reduction of stiffness

Search Result 834, Processing Time 0.028 seconds

Dynamic analysis and model test on steel-concrete composite beams under moving loads

  • Hou, Zhongming;Xia, He;Wang, Yuanqing;Zhang, Yanling;Zhang, Tianshen
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.565-582
    • /
    • 2015
  • This paper is concerned with the dynamic analysis of simply-supported steel-concrete composite beams under moving loads. Considering the interface slip between steel girder and concrete slab, the governing motion equations are derived from the direct balanced method. By variable separation approach, the analytical solution of natural frequencies and mode shapes are obtained, as well as the orthogonal conditions. Then the dynamic responses of the composite beam under moving loads are analyzed, and compared with the experimental results. The analysis results show that the governing motion equations become more complicated when interface slip is taken into account, and the dynamic behaviors are significantly influenced by the shear connection stiffness. In the dynamic calculation of composite beams, the global stiffness should not be reduced as the same factor to all orders, but as different ones according to the dynamic stiffness reduction factor (DSRF), to which should be paid more attention in calculation, design and experiment, or else great deviation is inevitable.

A study on Hair Bundle Feature Estimation Based on Negative Stiffness Mechanism Using Integrated Vestibular Hair Cell Model (전정 유모세포 통합 모델을 이용한 반강성 기전 기반 섬모번들 특성 추정에 관한 연구)

  • Kim, Dongyoung;Hong, Kihwan;Kim, Kyu-Sung;Lee, Sangmin
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.218-225
    • /
    • 2013
  • In this paper hair bundle feature model and integration method for hair cell models were proposed. The proposed hair bundle feature model was based on spring-damper-mass model. Input of integrated vestibular hair cell model was frequency and output was interspike interval of hair cell that was reflected the feature of hair bundles. Irregular afferents that had a great gain variation showed reduction of negative stiffness section. Regular afferents that had a small gain variation, however, showed same feature with base negative stiffness feature. As a result, integrated vestibular hair cell model showed almost the same modeling data with experimental data in the modeled eleven frequency bands. It is verified that the proposed model is a good model for hair bundle feature modeling.

Nonlinear Hysteretic Behavior of Hybrid Steel Beams with Reinforced Concrete Ends (단부 철근콘크리트 중앙부 철골조로 이루어진 혼합구조부의 비선형 이력거동)

  • 이은진;김욱종;문정호;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.379-387
    • /
    • 2002
  • This paper presents an analytical model on nonlinear hysteretic behavior of hybrid steel beam with reinforced concrete ends. The modeling method and appropriate coefficients with IDARC2D were proposed from the comparison with previous test results. Since the polygonal model of IDARC2D nay overestimate, new analytical model with the initial stiffness reduction coefficient was proposed. The hysteretic coefficients for the analysis of the hybrid steel beam with reinforced concrete ends were also presented. The analytical results were compared with previous experiments. The initial stiffness and the strength were predicted with less than 5% error and 10% error, respectively.

Experimental evaluation of an inertial mass damper and its analytical model for cable vibration mitigation

  • Lu, Lei;Fermandois, Gaston A.;Lu, Xilin;Spencer, Billie F. Jr.;Duan, Yuan-Feng;Zhou, Ying
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.589-613
    • /
    • 2019
  • Cables are prone to vibration due to their low inherent damping characteristics. Recently, negative stiffness dampers have gained attentions, because of their promising energy dissipation ability. The viscous inertial mass damper (termed as VIMD hereinafter) can be viewed as one realization of the inerter. It is formed by paralleling an inertial mass part with a common energy dissipation element (e.g., viscous element) and able to provide pseudo-negative stiffness properties to flexible systems such as cables. A previous study examined the potential of IMD to enhance the damping of stay cables. Because there are already models for common energy dissipation elements, the key to establish a general model for IMD is to propose an analytical model of the rotary mass component. In this paper, the characteristics of the rotary mass and the proposed analytical model have been evaluated by the numerical and experimental tests. First, a series of harmonic tests are conducted to show the performance and properties of the IMD only having the rotary mass. Then, the mechanism of nonlinearities is analyzed, and an analytical model is introduced and validated by comparing with the experimental data. Finally, a real-time hybrid simulation test is conducted with a physical IMD specimen and cable numerical substructure under distributed sinusoidal excitation. The results show that the chosen model of the rotary mass part can provide better estimation on the damper's performance, and it is better to use it to form a general analytical model of IMD. On the other hand, the simplified damper model is accurate for the preliminary simulation of the cable responses.

A Study on Transferred Load Reduction on Paved Track Roadbed with Low Elastic Base Plate Pad (저탄성 베이스플레이트 패드 적용에 따른 포장궤도 노반에서의 전달하중 저감에 관한 연구)

  • Lee, Il-Wha;Kang, Yun-Suk;Lee, Hee-Up
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.399-405
    • /
    • 2008
  • Development of the paved track is required as a low-maintenance of conventional line. The paved tracks are one of the types of the ballast reinforced tracks those are manufactured by adopting the prepacked concrete technique. The main elements of this tracks are large sleeper, low elastic pad, fastener, cement mortar, geotextile and recycled ballast. Low elastic pad is the most effective element of such tracks on the basis of stress-displacement characteristics, dynamic response and fatigue characteristics. The stiffness of the pad determine the stiffness of the track. Consequently, it is more important in case of concrete track structure such as paved track because application of low elastic pad seriously effect the durability and stability of the track. The main objective of this study is to confirm the reduction of train load, which transfer to roadbed through various pad effects. To achieve this task static, numerical analysis and real scale repeated loading test was performed while load reduction effect of low elastic pad was analyzed by using displacement, stress and strain ratio characteristics of the paved track.

Comparison Between the Dynamic Properties and Noise Isolation Performances for a Floor Impact Isolation Pad (바닥충격음 완충재의 동적특성과 소음저감 성능 비교)

  • Yang, Soo-Young;Lee, Dong-Hoon;Hong, Boung-Kuk;Song, Hwa-Young;Lee, Joo-Wone
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • In this study, the dynamic properties of a floor impact sound isolation pad expressed in terms of the natural frequency, the dynamic stiffness per unit area and the loss factor are measured by the resonant method. By using the measured dynamic properties, the vibration transmissibility diagram is obtained for each isolation pad, which is compared with the values tested by the impact sound sources at the room in an apartment. From the comparative results, it is found that the noise reduction Performances. of isolation pads are closely connected with the natural frequency and the dynamic stiffness per unit area.

  • PDF

Design Shear Force Reduction Factor of Upper Structure in Seismic Base-isolated System Considering Response Acceleration Decrement Effect (면진구조의 응답가속도 감소효과를 고려한 상부구조의 설계전단력 저감계수)

  • Chen, Hao;Oh, Sang-Hoon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.165-170
    • /
    • 2019
  • The structural damage caused by earthquake to the upper structure of seismic base-isolated system can be suppressed effectively because it is designed to concentrate the input energy on the seismic isolation floor. Further, the response acceleration of seismic base-isolated system can be greatly reduced compared to the seismic structure because of the long period, which means that the design shear force of the seismic base-isolated system can be reduced appropriately. However, when the design shear force is determined to be reduced, the design stiffness will decrease, and the response acceleration will increase oppositely. Therefore, for finding the extent to which the design shear force of the upper structure can be reduced, this paper considered the seismic base-isolated structure as the analytical model and proposed the design shear force reduction factor of the base-isolated structure through the dynamic response analysis, while considering the decrement effect of response acceleration. The research result shows that the response acceleration of the isolated the upper structure can be reduced by 50%~70% of the seismic structure under the same design conditions, and the design shear force can be reduced by up to 40%. By increasing the design stiffness over to 1.8 times of the original design value, the design shear force can be reduced to the same extent as the response acceleration can be reduced compared to the seismic structure.

A Damage Assessment Technique for Bridges Using Static Displacements (정적변위를 이용한 교량의 손상도 평가기법)

  • Choi, Il Yoon;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.641-646
    • /
    • 2002
  • A new damage detection technique using static displacement data was developed, in order to assess the structural integrity of bridge structures. In conventional damage assessment techniques using dynamic response, the variation of natural frequencies is intrinsically insensitive to the damage of the bridge: thus, it is usually difficult to obtain them from the measured data. The proposed detection method enables the estimation of the stiffness reduction of bridges using the static displacement data that are measured periodically, without requiring a specific loading test. Devices such as a laser displacement sensor can be used to measure static displacement data due to the dead load of the bridge structure. In this study, structural damage was represented by the reduction in the elastic modulus of the element. The damage factor of the element was introduced to estimate the stiffness reduction of the bridge under consideration. Likewise, the proposed algorithm was verified using various numerical simulations and compared with other damage detection methods. The effects of noise and number of damaged elements on damage detection were also investigated. Results showed that the proposed algorithm efficiently detects damage on the bridge.

Relationship between plasma asymmetric dimethylarginine and nitric oxide levels afects aerobic exercise training-induced reduction of arterial stifness in middle-aged and older adults

  • Shimomura, Mio;Fujie, Shumpei;Sanada, Kiyoshi;Kajimoto, Hiroki;Hamaoka, Takafumi;Iemitsu, Motoyuki
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.1
    • /
    • pp.16-22
    • /
    • 2021
  • [Purpose] Aerobic exercise training (AT) reverses aging-induced deterioration of arterial stiffness via increased arterial nitric oxide (NO) production. Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NO synthase, was decreased by AT. However, whether AT-induced changes in ADMA levels are related to changes in nitrite/nitrate (NOx) levels remains unclear. Accordingly, we aimed to clarify whether the relationship between plasma ADMA and NOx levels afected the AT-induced reduction of arterial stifness in middle-aged and older adults. [Methods] Thirty-one healthy middle-aged and older male and female subjects (66.4 ± 1.3 years) were randomly divided into two groups: exercise intervention and sedentary controls. Subjects in the training group completed an 8-week AT (60%-70% peak oxygen uptake [${\dot{V}}O_{2peak}$] for 45 min, 3 days/week). [Results] AT signifcantly increased ${\dot{V}}O_{2peak}$ (P < 0.05) and decreased carotid β-stifness (P < 0.01). Moreover, plasma ADMA levels were significantly decreased while plasma NOx levels and NOx/ADMA ratio were significantly increased by AT (P < 0.01). Additionally, no sex diferences in AT-induced changes of circulating ADMA and NOx levels, NOx/ADMA ratio, and carotid β-stifness were observed. Furthermore, the AT-induced increase in circulating ADMA levels was negatively correlated with an increase in circulating NOx levels (r = -0.414, P < 0.05), and the AT-induced increase in NOx/ADMA ratio was negatively correlated with a decrease in carotid β-stifness (r = -0.514, P < 0.01). [Conclusion] These results suggest that the increase in circulating NOx with reduction of ADMA elicited by AT is associated with a decrease in arterial stiffness regardless of sex in middle-aged and older adults.

The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting

  • Marian, Laurentiu;Giaralis, Agathoklis
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.665-678
    • /
    • 2017
  • In this paper the tuned mass-damper-inerter (TMDI) is considered for passive vibration control and energy harvesting in harmonically excited structures. The TMDI couples the classical tuned mass-damper (TMD) with a grounded inerter: a two-terminal linear device resisting the relative acceleration of its terminals by a constant of proportionality termed inertance. In this manner, the TMD is endowed with additional inertia, beyond the one offered by the attached mass, without any substantial increase to the overall weight. Closed-form analytical expressions for optimal TMDI parameters, stiffness and damping, given attached mass and inertance are derived by application of Den Hartog's tuning approach to suppress the response amplitude of force and base-acceleration excited single-degree-of-freedom structures. It is analytically shown that the TMDI is more effective from a same mass/weight TMD to suppress vibrations close to the natural frequency of the uncontrolled structure, while it is more robust to detuning effects. Moreover, it is shown that the mass amplification effect of the inerter achieves significant weight reduction for a target/predefined level of vibration suppression in a performance-based oriented design approach compared to the classical TMD. Lastly, the potential of using the TMDI for energy harvesting is explored by substituting the dissipative damper with an electromagnetic motor and assuming that the inertance can vary through the use of a flywheel-based inerter device. It is analytically shown that by reducing the inertance, treated as a mass/inertia-related design parameter not considered in conventional TMD-based energy harvesters, the available power for electric generation increases for fixed attached mass/weight, electromechanical damping, and stiffness properties.