• Title/Summary/Keyword: Reduction of outflow

Search Result 84, Processing Time 0.038 seconds

Development of Multiple Regression Models for the Prediction of Daily Ammonia Nitrogen Concentrations (일별 암모니아성 질소(NH3-N)농도 예측을 위한 다중회귀모형 개발)

  • Chug, Se-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.1047-1058
    • /
    • 2003
  • Seasonal occurrence of high ammonia nitrogen(NH3-N) concentrations has hampered chemical treatment processes of a water plant that intakes water at Buyeo site of Geum river. Thus it is often needed to quantify the effect of Daecheong Dam ouflow on the mitigation of $NH_3$-N contamination. In this study, multiple regression models were developed for forecasting daily $NH_3$-N concentrations using 8 years of water quality and dam outflow data, and verified with another 2 years of data set. During model development, the coefficients of determination($R^2$) and model efficiency($E_{m}$) were greater than 0.95. The verification results were also satisfactory although those statistical indices were slightly reduced to 0.84∼0.94 and 0.77∼0.93, respectively. The validated model was applied to assess the effect of different amounts of dam outflow on the reduction of $NH_3$-N concentrations in 2002. The NH3-N concentrations dropped by 0.332∼0.583 mg/L on average during January∼March as outflow increases from 5 to 50cms, and was most significant on February. The results of this research show that the multiple regression approach has potential for efficient cause and effect analysis between dam outflow and downstream water quality.

Characteristics of Nutrient Export from Paddy Rice Fields with Irrigation Practices (관개수원에 따른 논에서의 영양물질 배출 특성)

  • Hwang, Ha-Sun;Kong, Dong Soo;Shin, Dong-Suk;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.597-602
    • /
    • 2004
  • Field experimental study was performed to examine characteristics of nutrient export from paddy rice fields with irrigation practices. Experimental fields with surface-water and ground-water irrigation were monitored and analyzed during rice culture period. The water balance showed that outflow generally balanced the inflow showing that about half (58~68%) of total outflow was lost by surface drainage. Water and nutrient export are more in surface-water irrigation paddy than in ground-water irrigation paddy. The reasons might be more irrigation water available and easy to use in surface-water irrigation. If irrigation water reduced, it could result in reduction of nutrient export in paddy rice fields, which can save water and protect water quality. However, deviation from conventional standard practices might affect the rice yield and further investigations are necessary.

Assessment of Hydraulic Behavior and Water Quality Variation Characteristics in Underground Reservoir (지하저수조의 수리적 거동과 수질변화 특성 평가)

  • Lee, H.D.;Bae, C.H.;Kim, J.H.;Hwang, J.W.;Hong, S.H.
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.52-58
    • /
    • 2005
  • The assessment on characteristics of hydraulic behavior and water quality variations of underground reservoirs of buildings were studied. Firstly, it was thought that underground reservoir capacities($m^3$) of buildings should be not determinated by the uniform and same methods but be estimated on the basis of the dwelling areas on dominated households and their residential characteristics, because these characteristics influence significantly on actual water usages and patterns of buildings. Secondly, it was likely that the average reduction rate of residual chlorine in underground reservoirs were affected from the their capacities, because the average reduction rate of residual chlorine in underground reservoirs under $1,000m^3$ was 43 percent, on the other hand, that rate of underground reservoirs over $1,000m^3$ was 60 percent. Thirdly, through the field investigation, the retention time of drinking water in underground reservoirs were in the range from 0.3 day to 3.9 day. In addition to, the average reduction rate of residual chlorine were depended largely on the retention time of drinking water. When the retention time was under 24 hours, the average reduction rate of residual chlorine was 45 percent, and in case of over 24 hours, was 49 percent. Fourth, water level in underground reservoirs was averagely varied in the range from 0.1 m to 2.65 m at the height of underground reservoirs. If considered actual height of underground reservoirs, 37.6 percent of the height of underground reservoirs was only used. Consequently, the frequency of the inflow and outflow of drinking water in underground reservoir were very increased, and had an effect on the reduction of residual chlorine. Lastly, the investigations on hydraulic structure characteristics of underground reservoirs inside showed the locations of inflow and outflow of drinking water almost were in the opposite direction. And some buildings had several baffles in the middle. Nevertheless, their installations had no beneficial for the improvement of water quality.

Experimental Analysis of Nodal Head-outflow Relationship Using a Model Water Supply Network for Pressure Driven Analysis of Water Distribution System (상수관망 압력기반 수리해석을 위한 모의 실험시설 기반 절점의 압력-유량 관계 분석)

  • Chang, Dongeil;Kang, Kihoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.6
    • /
    • pp.421-428
    • /
    • 2014
  • For the analysis of water supply network, demand-driven and pressure-driven analysis methods have been proposed. Of the two methods, demand-driven analysis (DDA) can only be used in a normal operation condition to evaluate hydraulic status of a pipe network. Under abnormal conditions, i.e., unexpected pipe destruction, or abnormal low pressure conditions, pressure-driven analysis (PDA) method should be used to estimate the suppliable flowrate at each node in a network. In order to carry out the pressure-driven analysis, head-outflow relationship (HOR), which estimates flowrate at a certain pressure at each node, should be first determined. Most previous studies empirically suggested that each node possesses its own characteristic head-outflow relationship, which, therefore, requires verification by using actual field data for proper application in PDA modeling. In this study, a model pipe network was constructed, and various operation scenarios of normal and abnormal conditions, which cannot be realized in real pipe networks, were established. Using the model network, data on pressure and flowrate at each node were obtained at each operation condition. Using the data obtained, previously proposed HOR equations were evaluated. In addition, head-outflow relationship at each node was analyzed especially under multiple pipe destruction events. By analyzing the experimental data obtained from the model network, it was found that flowrate reduction corresponding to a certain pressure drop (by pipe destruction at one or multiple points on the network) followed intrinsic head-outflow relationship of each node. By comparing the experimentally obtained head-outflow relationship with various HOR equations proposed by previous studies, the one proposed by Wagner et al. showed the best agreement with the exponential parameter, m of 3.0.

Effects of Grassed Swale Lengths on Reduction Efficiencies of Non-point Source Pollutants (식생수로 길이가 비점오염물질 저감효율에 미치는 영향)

  • Paek, Seoungbong;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.387-396
    • /
    • 2013
  • Non-point pollution source is difficult to control due to uncertain outflow path and emission. So, There are many development and research to Best Management Practices(BMP) established to manage the Non-point pollution source. Besides, various methods of estimated efficiency to exact assessment of BMP is presented. In this study, the impact about length of Grassed Swale on reduction efficiency based on monitoring results of Grassed Swale by length is studied. By estimating Grassed Swale reduction efficiency in a variety of methods, the difference between the methods of estimated efficiency was compared with those that. Estimated efficiency method using ER, SOL, ROL, ROF, SOLF, and ROLF methods is analyzed. EMC analysis result is high inflow and outflow concentration distinction organic compound for nutritive salts The result of efficiency analysis along Grassed Swale length sharply increases in a Grassed Swale inlet. After this increase, the efficiency gradually decreases. This is expected that cistern installed in the end of the front. To obtain a stable reduction efficiency of Grassed Swale, minimum length 30m of Grassed Swale should be enough. Also, in order to efficiently and economically design Grassed Swale, the researches on length of Grassed Swale are needed rather than simple analysis of efficiency.

FFC2Q and XP-SWMM Comparative Study to Analyze Runoff Reduction by Urban Design Techniques (도시설계기법 유출저감 효과분석을 위한 FFC2Q와 XP-SWMM 비교 연구)

  • Song, Juil;Lee, ByoungJae;Yoo, Jaehwan
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.107-119
    • /
    • 2015
  • The flood or inundation that occur in high-density city can paralyze urban functions and cause a lot of casualties. In this study, to minimize the damage, the disaster mitigating urban design techniques for the divided basin as disaster occurring point, disaster vulnerable site, urban responding region are applied. First of all, to do this, it is necessary to verify the effectiveness of urban design techniques by simulating them. Therefore, in this paper, the applicability of urban runoff models used in domestic disaster reduction study was investigated to analyze the outflow decrease efficiency of urban design techniques. As the reviewing results, the limitations of the lumped models such as FFC2Q and XP-SWMM are presented.

Soil Erosion and Sediment Yield Reduction Analysis with Land Use Conversion from Illegal Agricultural Farming to Forest in Jawoon-ri, Kangwon using the SATEEC ArcView GIS System (SATEEC ArcView GIS 시스템을 이용한 홍천군 자운리 유역 무허가경작지의 산림 환원에 따른 토양유실 및 유사저감 분석)

  • Jang, Won-Seok;Park, Youn-Shik;Kim, Jong-Gun;Choi, Joong-Dae;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1300-1304
    • /
    • 2008
  • The fact that soil loss causing to increase muddy water and devastate an ecosystem has been appearing upon a hot social and environmental issues which should be solved. Soil losses are occurring in most agricultural areas with rainfall-induced runoff. It makes hydraulic structure unstable, causing environmental and economical problems because muddy water destroys ecosystem and causes intake water deterioration. One of three severe muddy water source areas in Soyanggang-dam watershed is Jawoon-ri region, located in Hongcheon county. In this area, many cash-crops are planted at illegally cultivated agricultural fields, which were virgin forest areas. The purpose of this study is to estimate soil loss with current land uses (including illegal cash-crop cultivation) and soil loss reduction with land use conversion from illegal cultivation back to forest. In this study, the Sediment Assessment Tool for Effective Erosion Control (SATEEC) ArcView GIS system was utilized to assess soil erosion. If the illegally cultivated agricultural areas are converted back to forest, it is expected to 17.42% reduction in soil loss. At the Jawoon-ri region, illegally cultivated agricultural areas located at over 30% and 15% slopes take 47.48 ha (30.83%) and 103.64 ha (67.29%) of illegally cultivated agricultural fields respectively. If all illegally cultivated agricultural fields are converted back to forest, it is expected that 17.41% of soil erosion and sediment reduction, 10.86% reduction with forest conversion from 30% sloping illegally agricultural fields, and 16.15% reduction with forest conversion from 15% sloping illegally agricultural fields. Therefore, illegally cultivated agricultural fields located at these sloping areas need to be first converted back to forest to maximize reductions in soil loss reduction and muddy water outflow from the Jawoon-ri regions.

  • PDF

Surface Cover Application for Reduction of Runoff and Sediment Discharge from Sloping Fields (경사지 밭에서 발생하는 토양유실 저감을 위한 피복재 적용)

  • Shin, Min-Hwan;Won, Chul-Hee;Park, Woon-Ji;Choi, Young-Hun;Shin, Jae-Young;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.129-136
    • /
    • 2011
  • To measure effects of surface cover on runoff and sediment discharge reduction using rainfall simulator, four(5 m${\times}$30 m scale) plot experiments were conducted in this study. Surface covers made with straw mat, Polyacrylamide (PAM), chaff, and sawdust were simulated 4 times under 31.1~44.4 mm/hr rainfall intensities. Compared with results from control plot, the time of runoff generation is delayed and outflow volume decreased with surface cover. Effects on runoff reduction of straw mat, PAM, sawdust and chaff ranged 4.7~81.5 % and runoff rate reduced by 6.5~76.1 % respectively, when compared with those from control plot. The percentage of decrease in sediment discharge were 99.7~99.8 % from straw mat+sawdust+PAM plots, 85.9~95.6 % from straw mat+PAM plots, and 98.5~99.4 % from straw mat+chaff+PAM plots. The runoff, sediment discharge, and SS concentration reduction efficiencies of the cover materials were outstanding when compared to control plot. It was analyzed that reduction of runoff and sediment discharge were mainly contributed by decrease in rainfall energy impact and flow velocity and increase of infiltration due to the surface cover materials. The results could be used as a base for the development of best management practices (BMPs) to reduce runoff, sediment discharge from sloping field.

Analysis of Runoff Reduction Effect and Rainfall Intensity-Duration Time of Permeable Block Facility (투수블록시설의 유출저감효과 분석 및 강우강도-지속시간 관계 분석)

  • Han, Sangyun;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Non-point pollution adversely affects the water system and its influence is increasing. In order to manage such nonpoint source pollution, the government has conducted studies on LID (Low Impact Development) facilities and various efficiency evaluations. In this study, the actual installed permeable block facility among the various LID facilities was analyzed the effluent reduction rate, the residual rainfall analysis, the runoff duration time and the reduction rate of the maximum inflow and outflow for the rainfall runoff control and the results were compared the other facilities. The analysis results show that the reduction efficiency is high in order of impermeable block, filter type permeable block, and clearance type permeable block, and the graph showing the relationship between the rainfall intensity and the runoff duration time is presented. This graph can be helpful in the design of facilities such as the facility capacity selection according to the reproduction period of the permeable block facility similar to this.

Effects of KanghwalSokdantang(KS) on LDL Oxidation in Macrophage Cell (대식세포의 oxLDL 생성에 미치는 강활속단탕의 영향)

  • Ko Seong-Gyu;Jeong Yong-Su;Sun Seung-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.203-212
    • /
    • 2003
  • Objective : As a link in chain of research to confirm the oriental medical prescription which has the anti-atherosclerosis effects, this research evaluated the effects on the macrophage-related factors by using KanghwalSokdantang(KS). Methods : In order to perform this research, we have evaluated the effects on the oxLDL formation from the macrophages, the nitric oxide formation, and the oxidation of macrophages. Thus, with this evaluation, we have investigated the applicapability on the artherosclerosis. Results : KanghwalSokdantang has showed a noticeable reduction of protein oxidation in the process of oxLDL formation, has remarkably restrained phospholipid peroxidation, an index to estimated the phospholipid oxidation and reduction that are formed in the process of macrophage's oxLDL formation, and has increased the nitrite concentration noticeably in the LDL-dealing macrophages. By increasing the survival rate of macrophages, KanghwalSokdantang has restrained the cellular damages. KanghwalSokdantang is ineffective on the LDH outflow from damaged cells. $1{\mu}g/ml$ KanghwalSokdantang sample has increased acid phosphatase activity remarkably. Conclusion : KanghwalSokdantang has the possibility to be used in the prevention and treatment of atherosclerosis, which is formed by the oxLDL formation of macrophages.

  • PDF