• 제목/요약/키워드: Reduction of friction

검색결과 604건 처리시간 0.024초

펨토초레이저를 이용한 알루미늄 성형다이의 미세가공에 관한 연구 (Die Surface Texturing by Femtosecond Laser for Friction Reduction)

  • 최해운;신현명
    • 한국정밀공학회지
    • /
    • 제26권5호
    • /
    • pp.57-63
    • /
    • 2009
  • Interface friction in blanking dies, cold forging and extrusion of aluminum alloys is a major cause of inefficient process. This paper describes an investigation of femtosecond laser texturing for reduction of interface friction on sliding surfaces in forming process. Femtosecond direct writing technology was used to fabricate a laser micro-machined die and to create microgroove patterns with varying size and density on metal forming dies. A systematic approach to find the optimum parameters and computer simulation comparison of friction coefficients are provided to study the relation of friction coefficients and die profiles. In metal forming tests, the effectiveness of various laser-machined patterns for enhancing interface lubrication is determined.

Micro-AAJ를 이용한 엔진 피스톤 링의 마찰 저감 표면 개발 (Development of Engine Piston Ring Surface for Friction Reduction using Micro Abrasive Air Jet)

  • 최수창;노승국;이현화;박종권
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.389-394
    • /
    • 2014
  • In this paper, we report a new manufacturing method for friction reduction using micro-AAJ (abrasive air-jet) machining. AAJ machining employs compressed air to accelerate a jet of high-speed particles to mechanically machine features, including micro-channels and micro-holes, into glass, metal, or polymer substrates for use in microfluidics, MEMS (micro electromechanical systems). And we introduce the micro-AAJ machining system, which consists of a micro-AAJ nozzle and a five-axis positioning system. Various micro-AAJ nozzles can be used, depending on the required surface structure, and three-dimensional machining is possible. We machined samples under six different conditions and describe machining results obtained while using it. We also measured the coefficient of friction of micro-textured surfaces. We report the coefficient of friction of micro-textured surfaces patterned using micro-AAJ machining for engine piston ring.

Effect of Citric Acid in Cu Chemical Mechanical Planarization Slurry on Frictional Characteristics and Step Height Reduction of Cu Pattern

  • Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.226-234
    • /
    • 2018
  • Copper chemical mechanical planarization (CMP) has become a key process in integrated circuit (IC) technology. The results of copper CMP depend not only on the mechanical abrasion, but also on the slurry chemistry. The slurry used for Cu CMP is known to have greater chemical reactivity than mechanical material removal. The Cu CMP slurry is composed of abrasive particles, an oxidizing agent, a complexing agent, and a corrosion inhibitor. Citric acid can be used as the complexing agent in Cu CMP slurries, and is widely used for post-CMP cleaning. Although many studies have investigated the effect of citric acid on Cu CMP, no studies have yet been conducted on the interfacial friction characteristics and step height reduction in CMP patterns. In this study, the effect of citric acid on the friction characteristics and step height reduction in a copper wafer with varying pattern densities during CMP are investigated. The prepared slurry consists of citric acid ($C_6H_8O_7$), hydrogen peroxide ($H_2O_2$), and colloidal silica. The friction force is found to depend on the concentration of citric acid in the copper CMP slurry. The step heights of the patterns decrease rapidly with decreasing citric acid concentration in the copper CMP slurry. The step height of the copper pattern decreases more slowly in high-density regions than in low-density regions.

고정된 분포 분사/흡입을 통한 채널 유동의 저항 감소 (Drag reduction in channel flow using stationary distributed blowing and suction)

  • 김주현;최해천
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.195-198
    • /
    • 2006
  • The possibility of skin friction reduction in laminar channel flow is investigated when the flow is subjected to stationary distributed surface blowing and suction. Blowing and suction provided at the channel walls is steady in time but varies as a sine function along the streamwise direction. The skin friction changes depending on the wavelength and amplitude of the actuation. Especially, the skin friction is reduced below that of fully developed laminar flow as the wavelength decreases and amplitude increases. The optimal wavelength of producing minimum skin friction is $\pi/2{\delta}$, where $\delta$ is the channel half-height It is observed that the distributed blowing and suction induces strong negative Reynolds shear stress in the near-wall region at the end of the suction part.

  • PDF

Tribology Characteristics of Hexagonal Shape Surface Textured Reduction Gear in Electric Agricultural Vehicle

  • Choi, Wonsik;Pratama, Pandu Sandi;Byun, Jaeyoung;Kwon, Soonhong;Kwon, Soongu;Park, Jongmin;Kim, Jongsoon;Chung, Songwon
    • 한국산업융합학회 논문집
    • /
    • 제22권1호
    • /
    • pp.47-54
    • /
    • 2019
  • An experimental study was conducted on the wear and friction responses in sliding tests of a micro-textured surface on laser pattern (LP) steel as reduction gear material in electric guided vehicle. In this research, the friction characteristics of laser pattern steel under different micro texture density conditions were investigated. The friction tests were carried out at sliding speeds of 0.06 m/s to 0.34 m/s and at normal loads of 2 to 10 N. Photolithography method was used to create the dimples for surface texturing purpose. Four different specimens having different dimple densities of 10%, 12.5%, 15%, and 20% were observed respectively. In this research, friction conditions as shown in Stribeck curve were investigated. Furthermore, the microscopic surface was observed using scanning electron microscope. It was found that the dimple density had a significant role on the friction characteristics of laser pattern steel conditioned as reduction gear material in an agricultural vehicle. The duty number showed that the friction condition was hydrodynamic regime. The best performance was obtained from 12.5% dimple density with lowest friction coefficient achieved at 0.018771 under the velocity of 0.34 m/s and 10N load.

복층 볼 배열 구조를 갖는 마찰식 감속기 (Friction Reducer with a Multi-Layer Ball Array Structure)

  • 김기쁨;신희찬;송재복
    • 로봇학회논문지
    • /
    • 제19권3호
    • /
    • pp.229-235
    • /
    • 2024
  • This research focuses on reducers, vital components in service robots, with a special emphasis on friction reducers designed for use in environments where interaction with humans is essential. For service robots to effectively perform advanced tasks, it is crucial to have reducers that offer high precision, high reduction ratios, and strong resistance to impacts. To meet these requirements, our study introduces a new design methodology and proposes a friction reducer featuring a multi-layer ball array structure. Compared to traditional gearbox-based reducers, the friction reducer developed in this study demonstrates a higher reduction ratio and improved shock absorption. The performance of this newly proposed reducer has been verified through experimental analysis. It was confirmed that by minimizing drive losses, the system has high backdrivability, delivering a torque of 15 Nm. Additionally, it was observed that the system showed an immediate response without backlash to fine input vibrations.

유용성 몰리브덴 화합물의 마찰감소 작용과 분위기효과 (Friction Reduction with Oil-Soluble Organo-Molybdenum Compound and Environmental Effect)

  • 김영환
    • Tribology and Lubricants
    • /
    • 제16권3호
    • /
    • pp.223-230
    • /
    • 2000
  • Molybdenum dialkyl dithiophosphate(MoDTP) 마찰특성을 이원통 마찰시험기에 의한 마찰실험 및 X-선광전자분광분석기를 이용하여 마찰표면을 분석함으로써 MoDTP의 마찰감소 작용에 대해 고찰하였다 MoDTP의 마찰감소작용은 마찰표면에 생성하는 MoS$_2$에 의존하였다. 몰리브덴(Mo)이 용이하게 금속내부로 확산하는 질소분위기 중에서는 MoDTP의 마찰감소 특성은 나타나지 않았으며, 금속표면에 산화피막이 존재할 때 MoDTP의 마찰감소작용이 잘 나타남을 알 수 있었다

연료 주입형 마찰 조정제가 엔진 마찰 및 연비에 미치는 영향에 대한 실험적 연구 (An Experimental Study for the Effect of Friction Modifier Added in Fuel on the Engine Friction and Fuel Economy)

  • 조명래;강경필;오대윤;최재권
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.133-137
    • /
    • 2002
  • This paper reports on the effect of fuel additive friction modifier on the engine friction and fuel consumption. The test of engine friction and fuel consumption is performed for the each oils and fuels. The TFA4724 friction modifier is added in test oil and fuel. The test results show that total engine friction is a decrease of 0.7-2.0% compared with base fuel, and fuel consumption is improved by 0.3%. The amount of friction reduction corresponds to that of boundary friction loss term in ring-pack friction losses. From the results, it is thought that the additive friction modifier in the fuel is effective to reduce the boundary friction in ring-pack.

Surface Texturing for Low Friction Mechanical Components

  • Iqbal, K. Y. Mohd;Segu, D. Z.;Pyung, H.;Kim, J. H.;Kim, S. S.
    • Tribology and Lubricants
    • /
    • 제31권6호
    • /
    • pp.287-293
    • /
    • 2015
  • Laser surface texturing (LST), a surface engineering modification, has been considered as one of the new processes used to improve tribological characteristics of materials by creating artificially patterned microstructure on the contact surface of mechanical components. In LST technology, the laser is optimized to obtain or manufacture the dimples with maximum precision. The micro-dimples reduce the coefficients of friction and also improve the wear resistance of materials. This study investigates the effect of dimple density is investigated. For this purpose, a ball-on-disc type tester is used with AISI 52100 bearing steel as the test material. Discs are textured with a 5% and 10% dimple density. Experimental work is performed with normal loads of 5 N, 10 N, and 15 N under a fixed speed of 150 rpm at room temperature. The effect of the textured surface is compared to that of the untextured one. Experimental results show that the textured surface yields lower friction coefficients compared to those of untextured surfaces. Specifically, the 10% dimple density textured surface shows better friction reduction behavior than the 5% dimple density textured sample, and has an 18% improvement in friction reduction compared with the untextured samples. Microscopic observation using a scanning electron microscope (SEM) shows that the major friction mechanisms of the AISI 52100 bearing steel are adhesion, plastic deformation, and ploughing.

Effects of Co-Existent Additives and the Role of Reacted Surface Film on the Friction with an Organo-Molybdenum Compound

  • Kim, Young-Hwan
    • Tribology and Lubricants
    • /
    • 제10권4호
    • /
    • pp.43-50
    • /
    • 1994
  • In order to elucidate the effects of co-existing additives (S$_{8}$, TBP: Tri butyl phosphate, ZnDTP: Zinc-dialkyl dithiophosphate) and the role of reacted surface film on the friction behavior of MoDTP (molybdenum dialkyl dithiophosphate), a friction experiment using a dual circular pipe edge surface type friction tester and XPS (X-ray photoelectronic spectrum) surface analysis were conducted. Friction reduction with MoDTP lubricant was proved to be greatly influenced by co-existing additive species. It was dependent on the properties of the film formed through the reaction between the additive and the surface. Phosphate film reduced the friction coefficient of MoDTP through suppression of diffusion of Mo compounds towards the metal substrate. On the other hand, sulfate film, which is inherently rich in lattice defects, did not lead to any appreciable friction reduction with MoDTP since the diffusion of the Mo compound towards the metal substrate was not effectively suppressed. With ZnDTP additive, the sulfide film formed through decomposition greatly influenced the lubricating performance of MoDTP. As such, properties of surface films formed from additives were proved to yield significant influence on the lubrication performance of MoDTP.