• 제목/요약/키워드: Reduction of Sample Thickness

검색결과 35건 처리시간 0.029초

PC소재의 선형 패턴 제작에 관한 연구 (A study on Linear Pattern Fabrication of Plate-type PC)

  • 정유나;이은경;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.277-280
    • /
    • 2008
  • Recently, a demand of nano/micro patterned polymer for display or biochip has been rising. Then many studies have been carried out. Nano/micro-embossing is a deformation process where the workpiece materials is heated to permit easier material flow and then forced over a planar patterned tool. In this work, the hot-emboss process is performed with different forming conditions; forming temperature, load, press hold time, to get the proper condition for linear pattern fabrication on plated-type polymers (PC). Replicated pattern depth increases in proportion to the forming temperature, load and time. Reduction of the workpiece thickness increases according to press hold time. In process of time, reduction ratio of workpiece thickness decreases because of surface area increment of the workpiece and pressure decline on it.

  • PDF

열간나노임프린트공정을 이용한 평판형 폴리머 소재의 선형 패턴 제작에 관한 연구 (A study on Linear Pattern Fabrication of Plate-type Polymer by Using Thermal Nano Imprint Lithography Process)

  • 정유나;이창수;윤성원;강충길
    • 소성∙가공
    • /
    • 제18권8호
    • /
    • pp.616-624
    • /
    • 2009
  • In this work we demonstrate the hot-embossing process under different forming conditions such as forming temperature, load, and holding time in pressing, in order to determine the suitable conditions required for linear patterning on polymer plates (PC). Results showed that the replicated pattern depth increased in proportion to an increase in the forming temperature, load, and time. The reduction of the workpiece thickness increased according to the holding time in the pressing process. In the process of time, the reduction ratio of the workpiece thickness decreased due to the surface area increment of the workpiece, while the pressure on the workpiece declined. In order to reduce the bulging ratio we introduced a temperature difference between the upper and the lower punch.

A Study on Contact Resistance Reduction in Ni Germanide/Ge using Sb Interlayer

  • Kim, Jeyoung;Li, Meng;Lee, Ga-Won;Oh, Jungwoo;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권2호
    • /
    • pp.210-214
    • /
    • 2016
  • In this paper, the decrease in the contact resistance of Ni germanide/Ge contact was studied as a function of the thickness of the antimony (Sb) interlayer for high performance Ge MOSFETs. Sb layers with various thickness of 2, 5, 8 and 12 nm were deposited by RF-Magnetron sputter on n-type Ge on Si wafers, followed by in situ deposition of 15nm-thick Ni film. The contact resistance of samples with the Sb interlayer was lower than that of the reference sample without the Sb interlayer. We found that the Sb interlayer can lower the contact resistance of Ni germanide/Ge contact but the reduction of contact resistance becomes saturated as the Sb interlayer thickness increases. The proposed method is useful for high performance n-channel Ge MOSFETs.

AA5052 판재의 비대칭 냉간압연 시 압연 패스당 압하율 제어에 의한 전단 변형 향상 (Improvement of shear deformation by controlling reduction per a rolling pass during asymmetrical cold rolling in AA 5052)

  • 강형구;한용희;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.226-228
    • /
    • 2007
  • During asymmetrical cold rolling in AA 5052 sheet a reduction per a rolling pass was varied to investigate the effect of the ratio of the contact length between the roll and sample ($l_c$) to the sheet thickness (d) on the formation of shear textures. In order to intensify the shear deformation during asymmetrical rolling, AA 5052 sheet was asymmetrically cold rolled without lubrication by using different roll velocities of upper and lower rolls. Asymmetrical rolling with $l_c$/d=1.8 led to the formation of texture gradients throughout the sheet thickness in which the outer thickness layers depicted shear textures and the center thickness layers displayed a rolling texture. Asymmetrical rolling with $l_c$/d=3.1 gave rise to the formation of shear textures in the whole through-thickness layer. The strain states associated with asymmetrical rolling were investigated by the finite element method (FEM) simulation. FEM results indicated that the evolution of deformation texture in a thickness layer is strongly governed by integrated values of strain rates and along the streamline in the roll gap.

  • PDF

알루미늄 판재의 비대칭 냉간압연 시 집합조직 발달에 미치는 압연변수의 영향 (Effect of rolling parameters on the evolution of texture during asymmetrical cold rolling of aluminum sheets)

  • 강형구;한용희;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.84-86
    • /
    • 2007
  • Aluminum sheets were asymmetrically cold rolled without lubrication by using different roll velocities of upper and lower rolls in order to intensify the shear deformation. During asymmetrical cold rolling of aluminum sheets, a reduction per a rolling pass, initial sheet thickness, roll diameter, roll velocity ratio were varied to investigate the effect of rolling parameters. The formation of through thickness shear texture was related to the ratio of the contact length between the roll and sample($l_c$) to the sheet thickness(d). The strain states associated with asymmetrical rolling were investigated by the finite element method (FEM) simulation. FEM results indicated that the evolution of deformation texture in a thickness layer is strongly governed by integrated values of strain rates $\dot{\varepsilon}_{13}$ and $\dot{\varepsilon}_{11}$ along the streamline in the roll gap.

  • PDF

이속압연에 의해 가공된 동합금 판재의 조직 및 기계적 특성 (Microstructure and Mechanical Properties of a Copper Alloy Sheet Processed by a Differential Speed Rolling)

  • 이성희
    • 한국재료학회지
    • /
    • 제22권11호
    • /
    • pp.581-586
    • /
    • 2012
  • The microstructure and mechanical properties of a copper alloy sheet processed by differential speed rolling (DSR) were investigated in detail. A copper alloy with thickness of 3 mm was rolled to a 50% reduction at ambient temperature without lubrication and with a differential speed ratio of 2.0:1. For comparison, conventional rolling (CR), in which the rolling speeds of the upper and lower rolls is 2.0 m/min, was also performed under the same rolling conditions. The shear strain of the sample processed by CR showed positive values at the positions of the upper roll side and negative values at the positions of the lower roll side. On the other hand, the sample processed by the DSR showed zero or positive shear strain values at all positions. However, the microstructure and mechanical properties of the as-rolled copper alloys did not show such significant differences between the CR and the DSR. The samples rolled by the CR and the DSR exhibited a typical deformation structure. In addition, the DSR processed samples showed a typical rolling texture in which {112}<111>, {011}<211> and {123}<634> components were developed at all positions. Therefore, it is concluded that the DSR was very effective for the introduction of a uniform microstructure throughout the thickness of the copper alloy.

고자속밀도와 저손실 특성을 갖는 중주파수대 철심재료 개발 및 응용 (Development of Core Material with High Magnetic Induction and Low Iron Loss for Middle-Frequency Applications)

  • 조성수;한상옥
    • 전기학회논문지P
    • /
    • 제58권2호
    • /
    • pp.190-195
    • /
    • 2009
  • Thin-gauged 3% silicon steel sheets having a highly grain-oriented texture have been developed as a core material for applications of middle-frequency (400 Hz ${\sim}$ 10 kHz) devices. The newly developed sheets with a tension coating showed an excellent reduction in iron loss at 400 Hz (iron loss at 1.0 T and 400 Hz = 4.677 W/kg, iron loss at 1.5 T and 400 Hz = 9.742 W/kg) due to high magnetic induction, $B_{10}$(measured induction at 1000 A/m), of over 1.9 T. In cases of frequencies below 400 Hz, magnetic induction, $B_{10}$, of the sample plays a major role to reduce its iron loss as excitation induction increases, whereas, in case of frequency of 1 kHz, thickness dependence becomes dominant due to a lower iron loss at relatively thinner sample. The sheets with a high magnetic induction, therefore, are favorable for high excitation induction (over 1.0 T) and low excitation frequency (below 400 Hz) applications, whereas the sheets that can reduce eddy current loss by reducing thickness or domain wall width are advantageous for low excitation induction (below 1.0 T) and high excitation frequency (around 1 kHz) applications.

이주속압연된 무산소동 판재의 두께방향으로의 변형, 조직 및 기계적 특성 (Strain, Microstructure and Mechanical Properties Through Thickness of Oxygen Free Copper Sheet Processed by Differential Speed Rolling)

  • 이성희;윤대진;左海哲夫;김수현;한승전
    • 대한금속재료학회지
    • /
    • 제47권2호
    • /
    • pp.121-128
    • /
    • 2009
  • The strain, microstructure and mechanical properties through thickness of an oxygen free copper(OFC) processed by differential speed rolling(DSR) were investigated in detail. The OFC sample with thickness of 1 mm was rolled to 35% reduction at ambient temperature without lubrication changing the differential speed ratio from 1.0:1 to 2.2:1. The shear strain introduced by the conventional rolling showed positive values at positions of upper roll side and negative values at positions of lower roll side. However, it showed zero or positive values at all positions for the samples rolled by the DSR. The effects of strain distribution through thickness of the coper sheets on microstructure, texture and mechanical properties are discussed in the present study.

채널의 길이가 짧은 NMOS 트랜지스터의 Threshold 전압과 Punchthrough 전압의 감소에 관한 실험적연구 (An Experimental Study on the Threshold Voltage and Punchthrough Voltage Reduction in Short-Channel NMOS Transistors)

  • 이원식;임형규;김보우
    • 대한전자공학회논문지
    • /
    • 제20권2호
    • /
    • pp.1-6
    • /
    • 1983
  • MOS 트랜지스터의 채널이 짧아짐에 따라 threshold 전압과 punchthrough 전압이 감소하는 현상을 실리콘 게이트 NMOS 기술로 제작한 소자로써 실험적으로 관찰하였다. 또한 게이트 산화막의 두께를 50nm와 70nm로 감소시키고 보론(boron)을 임플랜트한 소자를 제작하여 게이트 산화막의 두께와 서브스트레이트의 불순물의 농도가 threshold 전압과 Punchthrough 전압의 감소에 미치는 영향을 측정하였다. 또 채널의 길이가 3㎛인 소자에 대하여 hot-electron의 방출을 플로우팅 게이트 패준 방법에 의하여 측정하였으며 그 결과 채널의 길이가 3㎛까지는 hot-electron의 방출은 문제가 되진 않음을 관찰하였다.

  • PDF

2-pass 이주속압연된 인탈산동판재의 두께방향으로의 미세조직 및 기계적 특성 (Microstructure and Mechanical Property in Thickness Direction of a Deoxidized Low-Phosphorous Copper Sheet Processed by Two-Pass Differential Speed Rolling)

  • 이성희;장준혁;우쯔노미야 히로시
    • 한국재료학회지
    • /
    • 제23권7호
    • /
    • pp.392-398
    • /
    • 2013
  • A two-pass differential speed rolling(DSR) was applied to a deoxidized low-phosphorous copper alloy sheet in order to form a homogeneous microstructure. Copper alloy with a thickness of 3 mm was rolled to 75 % reduction by two-pass rolling at $150^{\circ}C$ without lubrication at a differential speed ratio of 2.0:1. In order to introduce uniform shear strain into the copper alloy sheet, the second rolling was performed after turning the sample by $180^{\circ}$ on the transverse direction axis. Conventional rolling(CR), in which the rotating speeds of the upper roll and lower roll are identical to each other, was also performed by two-pass rolling under a total rolling reduction of 75 %, for comparison. The shear strain introduced by the conventional rolling showed positive values at positions of the upper roll side and negative values at positions of the lower roll side. However, samples processed by the DSR showed zero or positive values at all positions. {100}//ND texture was primarily developed near the surface and center of thickness for the CR, while {110}//ND texture was primarily developed for the DSR. The difference in misorientation distribution of grain boundary between the upper roll side surface and center regions was very small in the CR, while it was large in the DSR. The grain size was smallest in the upper roll side region for both the CR and the DSR. The hardness showed homogeneous distribution in the thickness direction in both CR and DSR. The average hardness was larger in CR than in DSR.