• 제목/요약/키워드: Reduction failure

검색결과 943건 처리시간 0.025초

트러스 모델을 이용한 RC 부재의 변형 해석 (Truss Models for Deformation Analyses of RC Members)

  • 홍성걸;이수곤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.201-206
    • /
    • 2001
  • This paper presents truss model that can be used to determine the deformation as well as strength of RC members. This model is constituted to address plastic hinge rotation at tile deformation concentrated regions under severe lateral load. The behavior of each element of truss model is evaluated on the basis of stress field analysis. The deformation is obtained by combining element deformations with joint rotation. Initial strength is calculated at the first failure of any element, and strength deterioration after failure depends on the strength reduction of this element. The proposed model will provide useful tools in seismic design of ductility-required members.

  • PDF

BMS 수리모형하에서 시스템의 수리효과 및 고장강도함수의 모수추정 (Estimating Repair Effect and Parameters of Intensity Function under BMS Repair Model)

  • 윤원영;정석주;정일한;김종운;정상욱
    • 한국경영과학회지
    • /
    • 제25권4호
    • /
    • pp.45-54
    • /
    • 2000
  • Estimation Problems of parameters of the failure process and the repair effect in repairable systems are considered. We propose estimation procedures in repairable systems without preventive maintenances. The failure process is modeled by a proportional age reduction model (Brown, Mahoney, Sivazlian [5]) which is able to consider both aging and repair effects. Maximum likelihood method is used to estimate the repair effect and parameters of intensity function simultaneously. simulations are performed to evaluate the accuracy of estimators. A numerical example is also presented.

  • PDF

Reliability Equivalences of a Series System Consists of n Independent and Non-identical Components

  • Sarhan, A.M.;Mustafa, A.
    • International Journal of Reliability and Applications
    • /
    • 제7권2호
    • /
    • pp.111-125
    • /
    • 2006
  • This paper introduces different vectors of the reliability equivalence factors of a series system consists of n independent and nonidentical components. The failure rates of the system components are assumed to be constant. The reliability function and mean time to failure are used as performances to derive the reliability equivalences of the system. The results presented here generalize those available in the literatures. Numerical study is given to explain how one can utilize the theoretical results obtained.

  • PDF

The Effects of Elbow Joint Angle on the Mechanical Properties of the Common Extensor Tendon of the Humeral Epicondyle

  • Han, Jung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.582-591
    • /
    • 2004
  • The purpose of this study was to determine the effects of elbow joint angle on mechanical properties, as represented by ultimate load, failure strain and elastic modulus, of bone-tendon specimens of common extensor tendon of the humeral epicondyle. Eight pairs of specimens were equally divided into two groups of 8 each, which selected arbitrarily from left or right side of each pair, positioned at 45$^{\circ}$ and 90$^{\circ}$ of elbow flexion and subjected to tension to failure in the physiological direction of the common extensor tendon. For comparison of the differences in the failure and elastic modulus between tendon and the bone-junction, data for both were evaluated individually. Significant reduction in ultimate load of bone-tendon specimens was shown to occur at 45$^{\circ}$. The values obtained from the bone-tendon junctions with regard to the failure strain were significant higher than those from tendon in both loading directions, but the largest failure strain at the bone-tendon junction was found at 45$^{\circ}$. The elastic modulus was found to decrease significantly at the bone-tendon junction when the loading direction switched from 90$^{\circ}$ to 45$^{\circ}$. Histological observation, after mechanical tensile tests, in both loading directions showed that failure occurred at the interface between tendon and uncalcified fibrocartilage in the thinnest fibrocartilage zone of the bone-tendon junction. We concluded that differences in measured mechanical properties are a consequence of varying the loading direction of the tendon across the bone-tendon specimen.

강우에 의한 침투를 고려한 철도 절개 토사 사면의 안정해석 (Stability analyses of railroad cut-off soil slopes considering rainfall infiltration)

  • 이수형;황선근;김현기;사공명
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.811-818
    • /
    • 2005
  • Stability analyses on the 17 railroad cut-off soil slopes were carried out. The influences of rainfall infiltration on the slope stabilities were taken into account by seepage analyses using finite element method and by assuming ground water tables to be located adjacent to soil surface. The validity of those analyses were evaluated by comparing the slope failure characteristics between analysis results and the past failure records. The analyses were not appropriate to estimate the failure surface and the method considering only the increase of pore-water pressure (reduction of matric suction) as the influence of rainfall cannot appropriately estimate the surficial failures that occurred most of the cut-off soil slopes. For the better estimation of the surficial failure, the influence of water flows over slope surface which erode soil mass and/or increase driving force, should be evaluated and considered.

  • PDF

Seismic behavior of steel frames with replaceable reinforced concrete wall panels

  • Wu, Hanheng;Zhou, Tianhua;Liao, Fangfang;Lv, Jing
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.1055-1071
    • /
    • 2016
  • The paper presents an innovative steel moment frame with the replaceable reinforced concrete wall panel (SRW) structural system, in which the replaceable concrete wall can play a role to increase the overall lateral stiffness of the frame system. Two full scale specimens composed of the steel frames and the replaceable reinforced concrete wall panels were tested under the cyclic horizontal load. The failure mode, load-displacement response, deformability, and the energy dissipation capacity of SRW specimens were investigated. Test results show that the two-stage failure mode is characterized by the sequential failure process of the replaceable RC wall panel and the steel moment frame. It can be found that the replaceable RC wall panels damage at the lateral drift ratio greater than 0.5%. After the replacement of a new RC wall panel, the new specimen maintained the similar capacity of resisting lateral load as the previous one. The decrease of the bearing capacity was presented between the two stages because of the connection failure on the top of the replaceable RC wall panel. With the increase of the lateral drift, the percentage of the lateral force and the overturning moment resisted by the wall panel decreased for the reason of the reduction of its lateral stiffness. After the failure of the wall panel, the steel moment frame shared almost all the lateral force and the overturning moment.

와이블 고장모형 하에서 경고한계를 고려한 $\bar{X}$ 관리도의 경제적 설계 (Economic Design of $\bar{X}$-Control Charts with Warning Limits under Weibull Failure Model)

  • 정동욱;이주호
    • 품질경영학회지
    • /
    • 제40권2호
    • /
    • pp.186-198
    • /
    • 2012
  • Since Duncan(1956) first proposed an economic design of $\bar{X}$-control charts, most of the succeeding works on economic design of control charts assumed the exponential failure model like Duncan. Hu(1984), however, assumed a more versatile Weibull failure model to develop an economic design of $\bar{X}$-control charts and Banerjee and Rahim(1988) further improved Hu's design by changing the assumption of fixed-length sampling intervals to variable-length ones. In this article we follow the approach of Banerjee and Rahim(1988) but include a pair of warning limits inside the control limits in order to search for a failure without stopping the process when the sample mean falls between warning and control limits. The computational results indicate that the proposed model gives a lower cost than Banerjee and Rahim's model unless the early failure probability of a Weibull distribution is relatively large. The reduction in cost is shown to become larger as the cost of production loss outweighs the cost of searches for a failure.

Performance-based reliability assessment of RC shear walls using stochastic FE analysis

  • Nosoudi, Arina;Dabbagh, Hooshang;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.645-655
    • /
    • 2021
  • Performance-based reliability analysis is a practical approach to investigate the seismic performance and stochastic nonlinear response of structures considering a random process. This is significant due to the uncertainties involved in every aspect of the analysis. Therefore, the present study aims to evaluate the performance-based reliability within a stochastic finite element (FE) framework for reinforced concrete (RC) shear walls that are considered as one of the most essential elements of structures. To accomplish this purpose, deterministic FE analyses are conducted for both squat and slender shear walls to validate numerical models through experimental results. The presented numerical analysis is performed by using the ABAQUS FE program. Afterwards, a random-effects investigation is carried out to consider the influence of different random variables on the lateral load-top displacement behavior of RC members. Using these results and through utilizing the Monte-Carlo simulation method, stochastic nonlinear analyses are also performed to generate random FE models based on input parameters and their probabilistic distributions. In order to evaluate the reliability of RC walls, failure probabilities and corresponding reliability indices are calculated at life safety and collapse prevention levels of performance as suggested by FEMA 356. Moreover, based on reliability indices, capacity reduction factors are determined subjected to shear for all specimens that are designed according to the ACI 318 Building Code. Obtained results show that the lateral load and the compressive strength of concrete have the highest effects on load-displacement responses compared to those of other random variables. It is also found that the probability of shear failure for the squat wall is slightly lower than that for slender walls. This implies that 𝛽 values are higher in a non-ductile mode of failure. Besides, the reliability of both squat and slender shear walls does not change significantly in the case of varying capacity reduction factors.

하이브리드 굴삭기용 선회감속기의 가속수명시험에 관한 연구 (Study on Accelerated Life Testing of Swing Reduction Gear Box for Hybrid Excavator)

  • 박종원;최병오;김경근
    • 대한기계학회논문집A
    • /
    • 제37권11호
    • /
    • pp.1407-1413
    • /
    • 2013
  • 하이브리드 굴삭기는 기존 굴삭기와 달리 선회구동계에 유압모터를 대신하여 선회전동기를 사용하고 있다. 하이브리드 굴삭기의 신뢰성을 평가하고 보증하기 위해서는 기계와 전기적인 고장모드가 조합되어 고려되어야 한다. 특히, 하이브리드 굴삭기용 선회감속기는 가혹한 실외환경에서 운용되므로 시작품에 대한 현장작동조건을 고려한 가속수명시험이 수행되어야 한다. 본 연구에서는 선회구동계 중선회감속기에 대한 가속수명시험 기법의 개발을 위하여 FMMA, FMAECA, FTA 및 QFD와 같은 정성적 신뢰성기법을 활용하였고, 개발된 가속조건에 의한 수명시험결과를 유분석 기법 등을 활용 분석하여 평가대상 시료가 목표 신뢰도를 만족함을 확인하였다.

미시역학적 파손 기준을 이용한 탄소섬유/에폭시 복합재 링크의 안전성 평가 (Safety Evaluation of Carbon Fiber/Epoxy Composite Link Using Micromechanics of Failure Criterion)

  • 차재호;윤성호
    • Composites Research
    • /
    • 제36권3호
    • /
    • pp.154-161
    • /
    • 2023
  • 본 연구에서는 경량화를 위해 금속 링크를 탄소섬유/에폭시 복합재 링크로 대체하고자 파손 기준을 이용하여 복합재 링크가 주어진 하중 조건을 견딜 수 있는지를 평가하였다. 복합재의 파손 양상을 예측하기 위해 MMF 기준을 이용하였고, 기계적 시험을 수행하여 MMF의 기준 강도 파라미터를 구하였다. 연구결과 링크의 구멍 주위에서 응력집중이 발생하였고, 특히 굽힘 하중을 받을 때 링크 끝단과 구멍 주위에서 취약함이 드러났다. 파손 지수로부터 파손 양상을 예측하였고 매트릭스 인장 파손이 링크 끝단에서, 그리고 구멍 주위에서는 섬유의 압축 파손이 예측되었다. 본 연구를 통해 확보된 방법과 결과는 경량화를 위해 금속 부품을 탄소섬유/에폭시 복합재로 대체할 때 특정 하중 조건 하에서 복합재의 안전성을 평가하는 유용한 지침으로 활용할 수 있을 것이다.