• Title/Summary/Keyword: Reduction (of fractions) to a common denominator

Search Result 5, Processing Time 0.017 seconds

An Action Research on the Teaching Fraction Computation Using Semi-concrete Fraction Manipulatives (분수교구를 활용한 분수연산지도 실행연구)

  • Jin, Kyeong-oh;Kwon, Sung-yong
    • Journal of the Korean School Mathematics Society
    • /
    • v.25 no.4
    • /
    • pp.307-332
    • /
    • 2022
  • This action research was carried out to help students learn fractions computation by making and using semi-concrete fraction manipulatives that can be used continuously in math classes. For this purpose, the researcher and students made semi-concrete fraction manipulatives and learned how to use these through reviewing the previously learned fraction contents over 4 class sessions. Afterward, through the 14 classes (7 classes for learning to reduce fractions and to a common denominator, 7 classes for adding and subtracting fractions with different denominators) in which the principle inquiry learning model was applied, students actively engaged in learning activities with fraction manipulatives and explored the principles underneath the manipulations of fraction manipulatives. Students could represent various fractions using fraction manipulatives and solve fraction computation problems using them. The achievement evaluation after class found that the students could connect the semi-concrete fraction manipulatives with fraction representation and symbolic formulas. Moreover, the students showed interest and confidence in mathematics through the classes using fraction manipulatives.

연산의 관점에서 본 등식의 성질에 관한 고찰

  • Kim, Boo-Yoon;Chung, Young-Woo;Park, Young-Sik
    • East Asian mathematical journal
    • /
    • v.26 no.2
    • /
    • pp.179-190
    • /
    • 2010
  • We study the theoretical background on the relationship between the equality property and operations treated in different sub-areas in secondary school mathematics curriculum respectively studied. Furthermore, we discuss in detail the equality property in rational numbers field $\mathbb{Q}$ and the real numbers field $\mathbb{R}$. Through this study, professional knowledges of school teachers are enhanced so that these aforementioned knowledges are connected smoothly to teaching activities in classrooms.

A Case Study on the Fractional Sense and Fraction Operation Ability of Elementary Gifted Class Students (초등 영재학급 학생의 분수 감각과 분수 조작 능력 사례연구)

  • Hae Gyu, Kim;Hosoo Lee;Keunbae Choi
    • East Asian mathematical journal
    • /
    • v.40 no.2
    • /
    • pp.183-207
    • /
    • 2024
  • This study is a case study that considered fractional senses and fraction operation abilities for 107 gifted students in elementary school classes. In order to find out the fractional sense, in the first question comparing the sizes of fractions 2/3 and 4/5, the students showed a variety of strategies, but the utilization rate of strategies excluding reduction to a common denominator did not exceed 50%. The second question can be solved by using the first question. It is a problem of finding two fractions by selecting four from six numbers 1, 3, 4, 5, 6, and 7 to create two fractions of which sum does not exceed 1. The percentage of correct answers to this question was about 27% (29 out of 107). Only 5 out of 29 students found answers using the first question, and the rest of the students sought answers through trial and error in various calculations. It shows that the item arrangement method from a deductive perspective has no significant effect on elementary school students. The percentage of correct answers was about 27% in the questions to find out the fraction operation ability-the question of drawing a 4/3 bar using a given 3/8-sized bar and 30.7% (23 out of 75) of the students who had wrong answers showed insufficient splitting operation. In addition, it has been shown that the operation of partitioning and iterating to form numerical senses and fractional concepts related to the fractions of the students has no significant impact.

An analysis of 6th graders' cognitive structure about division of fraction - Application of Word Association Test(WAT) - (분수의 나눗셈과 관련된 초등학교 6학년 학생들의 인지구조 분석 - 단어연상검사(Word Association Test) 적용 -)

  • Lee, Hyojin;Lee, Kwangho
    • The Mathematical Education
    • /
    • v.53 no.3
    • /
    • pp.329-355
    • /
    • 2014
  • The purpose of this study is to understand the difference of cognitive structure depending on the level of the 6th graders' problem-solving abilities about the division of fraction and to propose a method for improving the 6th graders' understanding about the division of fraction through the word association test. The following is the findings from this study. 1)The lower level students' is, the lower the step that the chunk appeared in cognitive structure is. 2)The basic level students' association frequency between any two concepts was less than the excellent level students and the ordinary level students' it. 3)The basic level students' connection number between concepts was far less than the excellent level students and the ordinary level students' it. 4)The connection between natural number and unit fractions, subtraction of fraction and division of fraction, division of fraction and reduction to common denominator, and division of fraction and common multiple that expected in this study did not appear in the three groups.

An Analysis of Teaching Divisor and Multiple in Elementary School Mathematics Textbooks (초등학교 수학 교과서에 나타난 약수와 배수지도 방법 분석)

  • Choi Ji Young;Kang Wan
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.7 no.1
    • /
    • pp.45-64
    • /
    • 2003
  • This study analyzes divisor and multiple in elementary school mathematics textbooks published according to the first to the 7th curriculum, in a view point of the didactic transposition theory. In the first and second textbooks, the divisor and the multiple are taught in the chapter whose subject is on the calculations of the fractions. In the third and fourth textbooks, divisor and multiple became an independent chapter but instructed with the concept of set theory. In the fifth, the sixth, and the seventh textbooks, not only divisor multiple was educated as an independent chapter but also began to be instructed without any conjunction with set theory or a fractions. Especially, in the seventh textbook, the understanding through activities of students itself are strongly emphasized. The analysis on the each curriculum periods shows that the divisor and the multiple and the reduction of a fractions to the lowest terms and to a common denominator are treated at the same period. Learning activity elements are increase steadily as the textbooks and the mathematical systems are revised. The following conclusion can be deduced based on the textbook analysis and discussion for each curriculum periods. First, loaming instruction method also developed systematically with time. Second, teaching method of the divisor and multiple has been sophisticated during the 1st to 7th curriculum textbooks. And the variation of the teaching sequences of the divisor and multiple is identified. Third, we must present concrete models in real life and construct textbooks for students to abstract the concepts by themselves. Fourth, it is necessary to develop some didactics for students' contextualization and personalization of the greatest common divisor and least common multiple. Fifth, the 7th curriculum textbooks emphasize inquiries in real life which teaming activities by the student himself or herself.

  • PDF