• Title/Summary/Keyword: Reductase

Search Result 1,685, Processing Time 0.037 seconds

2020 Dietary Reference Intakes for Koreans: riboflavin (2020 한국인 영양소 섭취기준: 리보플라빈)

  • Lee, Jung Eun;Cho, Jin Ah;Kim, Ki Nam
    • Journal of Nutrition and Health
    • /
    • v.55 no.3
    • /
    • pp.321-329
    • /
    • 2022
  • Riboflavin and its derivatives, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), are key components of mitochondrial energy metabolism and oxidation-reduction reactions. Proposed dietary reference intakes for Koreans (KDRIs), that is, estimated average requirements (EARs), for riboflavin, based on current knowledge of riboflavin and riboflavin derivative levels, and glutathione reductase activity, are 1.3 mg/d for men aged 19-64 years and 1.0 mg/d for women aged 19-64 years. By applying a coefficient of variance of 10%, reference nutrient intakes (RNIs) were set at 1.5 mg/d for men aged 19-64 years and 1.2 mg/d for women aged 19-64 years. Likewise, EARs and RNIs of riboflavin intake were proposed for all age groups and women in specific life stages such as pregnancy. Mean adult riboflavin intake for adults aged ≥ 19 years was 1.69 mg/d in Korea National Health and Nutrition Examination Survey (KNHANES) 2020, which was 124.9% of EAR according to the 2020 KDRIs. In the 2015-2017 KNHANES study, the mean riboflavin intake from foods and supplements was 2.79 mg/d for all age groups, and 32.7% of individuals consumed less riboflavin than EAR according to the 2020 KDRIs. For those that used supplements, mean intakes were 1.50 mg/d for riboflavin from foods, 10.26 mg/d from supplements, and 11.76 mg/d from food and supplements, and 5.5% of individuals consumed less riboflavin than EAR. Although the upper limit of riboflavin has not been established, the merits of increasing supplement use warrant further consideration. Also, additional epidemiologic and intervention studies are required to explore the role of riboflavin in the etiology of chronic diseases.

Atorvastatin and Fluvastatin Can Reduce IL-1β-induced Inflammatory Responses in Human Keratinocytes (Atorvastatin 그리고 fluvastatin 약물의 IL-1β-유도 염증반응 억제 효과)

  • Choe, Yeong-In;Moon, Kyoung Mi;Yoo, Jae Cheal;Byun, June-Ho;Hwang, Sun-Chul;Moon, Dong Kyu;Woo, Dong Kyun
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.418-424
    • /
    • 2021
  • Skin inflammation (dermatitis) is caused by varying skin damage due to ultraviolet radiation and microbial infection. Currently prescribed drugs for dermatitis include anti-histamine and steroid drug classes that soothe inflammation. However, incorrect or prolonged use of steroids can cause weakening of skin barriers as well as osteoporosis. Therefore, treating dermatitis with a drug that has minimal side effects is important. Statins, also known as 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, are cholesterol-lowering drugs that have been widely treated for hyperlipidemia and cardiovascular diseases. Interestingly, recent studies have shown the anti-inflammatory effects of statins in both experimental and clinical models for of osteoarthritis. This study investigated the possible anti-inflammatory effects of atorvastatin and fluvastatin in human keratinocytes (HaCaT cells), which are crucial components of skin barriers. Stimulation of HaCaT cells with IL-1β increased the expression of the COX2 protein, a major player of inflammatory responses. However, this induction of the COX2 protein was downregulated by pretreatments with atorvastatin and fluvastatin. Treatment with IL-1ß-induced the upregulation of other inflammatory genes (such as iNOS and MMP-1) and these expressions were similarly lowered by these two statin drug treatments. Taken together, these results indicated that atorvastatin and fluvastatin can reduce IL-1β-induced inflammatory responses in HaCaT cells. In conclusion, the findings suggest that atorvastatin and fluvastatin can be potential modulators for ameliorating skin inflammation.

Effectiveness of statin treatment for recurrent stroke according to stroke subtypes (뇌졸중 재발에 대한 스타틴 치료의 뇌졸중 아형에 따른 효과성)

  • Min-Surk Kye;Do Yeon Kim;Dong-Wan Kang;Baik Kyun Kim;Jung Hyun Park;Hyung Seok Guk;Nakhoon Kim;Sang-Won Choi;Dongje Lee;Yoona Ko;Jun Yup Kim;Jihoon Kang;Beom Joon Kim;Moon-Ku Han;Hee-Joon Bae
    • Journal of Medicine and Life Science
    • /
    • v.21 no.2
    • /
    • pp.40-48
    • /
    • 2024
  • Understanding the effectiveness of statin treatment is essential for developing tailored stroke prevention strategies. We aimed to evaluate the efficacy of statin treatment in preventing recurrent stroke among patients with various ischemic stroke subtypes. Using data from the Clinical Research Collaboration for Stroke-Korea-National Institute for Health (CRCS-K-NIH) registry, we included patients with acute ischemic stroke admitted between January 2011 and July 2020. To evaluate the differential effects of statin treatment based on the ischemic stroke subtype, we analyzed patients with large artery atherosclerosis (LAA), cardio-embolism (CE), and small vessel occlusion (SVO). The primary outcomes were recurrent ischemic stroke and recurrent stroke events. The hazard ratio for outcomes between statin users and nonusers was compared using a Cox proportional hazards model adjusted for covariates. A total of 46,630 patients who met the inclusion criteria were analyzed. Statins were prescribed to 92%, 93%, and 78% of patients with LAA, SVO, and CE subtypes, respectively. The hazards of recurrent ischemic stroke and recurrent stroke in statin users were reduced to 0.79 (95% confidence interval [CI], 0.63-0.99) and 0.77 (95% CI, 0.62-0.95) in the LAA subtype and 0.63 (95% CI, 0.52-0.76) and 0.63 (95% CI, 0.53-0.75) in CE subtype compared to nonusers. However, the hazards of these outcomes did not significantly decrease in the SVO subtype. The effectiveness of statin treatment in reducing the risk of recurrent stroke in patients with LAA and CE subtypes has been suggested. Nonetheless, no significant effect was observed in the SVO subtype, suggesting a differential effect of statins on different stroke subtypes.

Examination of the Central Metabolic Pathway With Genomics in Lactiplantibacillus plantarum K9 (Lactiplantibacillus plantarum K9 유전체 분석을 통해 필수 물질대사 경로의 탐색)

  • Sam Woong Kim;Young Jin Kim;Hyo In Choi;Sang Won Lee;Won-Jae Chi;Woo Young Bang;Tae Wan Kim;Kyu Ho Bang;Sang Wan Gal
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.465-475
    • /
    • 2024
  • Lactiplantibacillus plantarum K9 is a probiotic strain that can be utilized from various bioactive substances isolated from Protaetia brevitarsis seulensis larvae. In this study, a genetic analysis of L. plantarum K9 revealed the existence of a bacterial chromosome and three plasmids. The glycolysis pathway and pentose phosphate pathway were examined for their normal functioning via an analysis of the core metabolic pathways of L. plantarum K9. Since the key enzymes, fluctose-1,6-bisphospatase (EC: 3.1.3.11) and 6-phosphogluconate dehydratase (EC: 4.2.1.12)/2-keto-deoxy-6-phosphogluconate (KDPG) aldolase (EC: 4.2.1.55), of gluconeogenesis and the ED pathway were not identified from the L. plantarum K9 genome, we suggest that gluconeogenesis and the ED pathway are not performed in L. plantarum K9. Additionally, while some enzymes, related to fumarate and malate biosyntheses, involved in the TCA cycle were identified from L. plantarum K9, the enzymes associated with the remaining TCA cycle were absent, indicating that the TCA cycle cannot proceed. Meanwhile, based on our findings, we propose that the oxidative electron transport system performs class IIB-type (bd-type) electron transfer. In summary, we assert that L. plantarum K9 performs homolactic fermentation, executes gluconeogenesis and the pentose phosphate pathway, and carries out energy metabolism through the class IIB-type oxidative electron transport system. Therefore, we suggest that L. plantarum K9 has relatively high lactic acid production, and that it has excellent antibacterial activity, as a result, compared to other lactic acid bacterial strains. Moreover, we speculate that L. plantarum K9 has an oxidative electron transport capability, indicating that it is highly resistant to oxygen and suggesting that it has fine cultivation characteristics, which collectively make it highly suitable for use as a probiotic.

The Hepatoprotective Effect of Active Compounds of Kochiae fructus on D-Galactosamine-Intoxicated Rats (지부자 활성성분이 D-Galactosamine 투여에 의한 흰쥐의 간손상에 미치는 영향)

  • Kim, Na-Young;Lee, Jeong-Sook;Park, Myoung-Ju;Lee, Kyung-Hee;Kim, Seok-Hwan;Choi, Jong-Won;Park, Hee-Juhn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1286-1293
    • /
    • 2004
  • This study was conducted to investigate the biological activity and hepatoprotective effect of various fractions and isolated compounds from Kochiae fructus (KF) extract on D-galactosamine (GaIN)-intoxicated rats. Male Sprague-Dawley rats were divided into control, GaIN treated group (GaIN), GaIN plus KF methanol extract treated group (KFM 200-GaIN), GaIN plus KF butanol extract treated group (KFB 200-GaIN), GaIN plus momordin Ic treated group (Momordin Ic 30-GaIN) and GaIN plus oleanolic acid treated group (Oleanolic acid 30-GaIN). KFM (200 mg/kg BW), KFB (200 mg/kg BW), momordin Ic (30 mg/kg BW) and oleanolic acid (30 mg/kg BW) were orally administered once a day for 14 days. GaIN (400 mg/kg BW) was injected at 30 minutes after the final administration of the compounds. The activities of serum aspartate aminotransferase and alanine aminotransferase were increased in the GaIN group compared to the control group and significantly lower in the KFB 200-GaIN, momordin Ic 30-GaIN and oleanolic acid 30-GaIN group than in the GaIN group. Hepatic lipid peroxide level was increased in the GaIN group compared to the control group and was lower in the KFM 200-GaIN, KFB 200-GaIN, momordin Ic 30-GaIN and oleanolic acid 30-GaIN group than in the GaIN group. Activities of xanthine oxidase and aldehyde oxidase in liver were higher in the GaIN group than in the control group and were significantly decreased in the KFB 200-GaIN, momordin Ic 30-GaIN and oleanolic acid 30-GaIN group compared to the GaIN group. Hepatic glutathione, ${\gamma}$-glutamylcysteine synthetase and catalase activities were decreased in the GaIN group compared to the control group and were higher in the KFB 200-GaIN, momordin Ic 30-GaIN and oleanolic acid 30-GaIN group than in the GaIN group. Activities of hepatic glutathione reductase, glutathione S-transferase, superoxide dismutase and glutathione peroxidase were lower in the GaIN group than in the control group and were improved in the KFM 200-GaIN, KFB 200-GaIN, momordin Ic 30-GaIN and oleanolic acid 30-GaIN group compared to the GaIN group. Therefore, the current results indicate that momordin Ic administration alleviated the GaIN-induced adverse effect through enhancing the antioxidant enzyme activities.