DOI QR코드

DOI QR Code

2020 Dietary Reference Intakes for Koreans: riboflavin

2020 한국인 영양소 섭취기준: 리보플라빈

  • Lee, Jung Eun (Department of Food and Nutrition, Seoul National University) ;
  • Cho, Jin Ah (Department of Food and Nutrition, Chungnam National University) ;
  • Kim, Ki Nam (Department of Food and Nutrition, Daejeon University)
  • 이정은 (서울대학교 생활과학대학 식품영양학과) ;
  • 조진아 (충남대학교 생활과학대학 식품영양학과) ;
  • 김기남 (대전대학교 보건의료과학대학 식품영양학과)
  • Received : 2022.03.15
  • Accepted : 2022.06.17
  • Published : 2022.06.30

Abstract

Riboflavin and its derivatives, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), are key components of mitochondrial energy metabolism and oxidation-reduction reactions. Proposed dietary reference intakes for Koreans (KDRIs), that is, estimated average requirements (EARs), for riboflavin, based on current knowledge of riboflavin and riboflavin derivative levels, and glutathione reductase activity, are 1.3 mg/d for men aged 19-64 years and 1.0 mg/d for women aged 19-64 years. By applying a coefficient of variance of 10%, reference nutrient intakes (RNIs) were set at 1.5 mg/d for men aged 19-64 years and 1.2 mg/d for women aged 19-64 years. Likewise, EARs and RNIs of riboflavin intake were proposed for all age groups and women in specific life stages such as pregnancy. Mean adult riboflavin intake for adults aged ≥ 19 years was 1.69 mg/d in Korea National Health and Nutrition Examination Survey (KNHANES) 2020, which was 124.9% of EAR according to the 2020 KDRIs. In the 2015-2017 KNHANES study, the mean riboflavin intake from foods and supplements was 2.79 mg/d for all age groups, and 32.7% of individuals consumed less riboflavin than EAR according to the 2020 KDRIs. For those that used supplements, mean intakes were 1.50 mg/d for riboflavin from foods, 10.26 mg/d from supplements, and 11.76 mg/d from food and supplements, and 5.5% of individuals consumed less riboflavin than EAR. Although the upper limit of riboflavin has not been established, the merits of increasing supplement use warrant further consideration. Also, additional epidemiologic and intervention studies are required to explore the role of riboflavin in the etiology of chronic diseases.

리보플라빈 (비타민 B2)은 한국인에게 섭취 부족의 우려가 있는 비타민으로서 에너지 대사를 포함한 산화/환원 반응의 조효소로서 작용한다. 적절한 섭취수준을 평가하는 방법으로는 적혈구에서의 리보플라빈 농도나 EGRAC, 혹은 소변의 리보플라빈 농도를 측정하는 것이다. 적혈구 리보플라빈 수준은 400 nmol/L (15 ㎍/100 mL) 이상을 적정수준, 270 nmol/L (10 ㎍/100 mL) 이하를 결핍으로 하거나 EGRAC 값이 1.2 이하인 경우 적정수준, 1.4이상이면 결핍으로 판정한다. 2020 한국인 영양소 섭취기준 개정 시 19-64세 성인의 2020 리보플라빈 평균필요량은 남자 1.3 mg/d, 여자 1.0 mg/d로 설정되었으며, 64-74세 남자 1.2 mg/d, 여자 0.9 mg/d, 75세 이상 남자 1.1 mg/d, 여자 0.8 mg/d로 성인 보다 낮게 설정되었다. 2020 국민건강영양조사 결과 19세 이상 우리나라 성인의 리보플라빈 평균 섭취량은 1.69 mg/d이며, 권장섭취량 대비 124.9% 였고, 보충제 섭취자들의 보충제로부터의 리보플라빈 섭취량은 평균 10.26 mg/d로 식품으로부터 섭취하는 1.50 mg에 비해 약 6.8배 높은 수준이었다 [18]. 2020 한국인 영양소 섭취기준에서 연령별, 성별 리보플라빈 권장섭취량은 각 생애주기 구간별 평균필요량에 변이계수 10%를 적용하여 평균필요량의 120% 수준으로 설정되었다 리보플라빈의 대표적 식품 급원으로는 유제품, 난류, 육류, 가금류와 생선류의 동물성 식품과 두류, 녹색채소류, 곡류 등이 있으며 2020 국민건강영양조사에 따르면 한국인의 리보플라빈 급원 식품으로 기여도가 높은 식품은 달걀, 라면, 돼지고기, 우유, 간장, 쇠고기, 배추김치, 닭고기, 고추가루, 시리얼 순이다. 최근 리보플라빈의 경우 비타민 보충제 외에도 다양한 건강기능성 식품섭취로 인해 보충제를 섭취하는 사람들의 경우 보충제로부터의 섭취수준이 식품으로부터의 섭취량을 훨씬 초과하고 있어 리보플라빈 영양상태 평가 시 보충제로부터 섭취하는 수준에 대한 평가가 향후 반드시 필요하다. 또한 2020 한국인 영양소 섭취기준 개정에서는 만성 질환 예방에 대한 부분은 아직 과학적 증거의 불충분으로 고려되지 않았으나 향후 만성질환과 관련된 역학연구 및 중재연구가 더 필요하다고 판단된다.

Keywords

References

  1. Rivlin RS. Riboflavin. In: Coates PM, Betz JM, Blackman MR., editors. Encyclopedia of Dietary Supplements. 2nd ed. London and New York: Informa Healthcare; 2010. p.691-699.
  2. McCormick DB. Riboflavin. In: Erdman JW, Macdonald IA, Zeisel SH, editors. Present Knowledge in Nutrition. 10th ed. Washington, D.C.: Wiley-Blackwell; 2012. p.280-292.
  3. Ministry of Health and Welfare; The Korean Nutrition Society. Dietary reference intakes for Koreans 2020: vitamins. Seoul: The Korean Nutrition Society; 2020.
  4. Korea Health Statistics 2020: Korea National Health and Nutrition Examination Survey (KNHANES VIII-2). Cheongju: Korea Disease Control and Prevention Agency; 2021.
  5. Ramsay VP, Neumann C, Clark V, Swendseid ME. Vitamin cofactor saturation indices for riboflavin, thiamine, and pyridoxine in placental tissue of Kenyan women. Am J Clin Nutr 1983; 37(6): 969-973. https://doi.org/10.1093/ajcn/37.6.969
  6. Hill MH, Bradley A, Mushtaq S, Williams EA, Powers HJ. Effects of methodological variation on assessment of riboflavin status using the erythrocyte glutathione reductase activation coefficient assay. Br J Nutr 2009; 102(2): 273-278. https://doi.org/10.1017/S0007114508162997
  7. Gibson RS. Assessment of the Status of thiamin, riboflavin, and niacin. In: Principles of Nutritional Assessment. 2nd ed. New York (NY): Oxford University Press; 2005. p.545-568.
  8. The Korean Nutrition Society. Dietary reference intakes for Koreans, 1st revision. Seoul: The Korean Nutrition Society; 2010.
  9. Ministry of Health, Labour and Welfare of Japan. DRI Dietary Reference Intakes for Japanese. Tokyo: Ministry of Health, Labour and Welfare of Japan; 2020. (Japanese).
  10. Institute of Medicine, Food and Nutrition Board. Dietary reference intakes: thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, D.C.: National Academy Press; 1998.
  11. Hwang GH. A study on the metabolism of riboflavin in Korean men. J Korean Soc Food Sci Nutr 1994; 23(4): 594-603.
  12. Lim WJ, Yoon JS. Effects of dietary intake and work activity on seasonal variation of riboflavin status in rural women. Korean J Nutr 1996; 29(9): 1003-1012.
  13. Lim WJ, Yoon JS. A longitudinal study on seasonal variation of riboflavin status of rural women: dietary intake, erythrocyte glutathione reductase activity coefficient, and urinary riboflavin excretion. Korean J Nutr 1996; 29(5): 507-516.
  14. Choi JY, Kim YN, Cho YO. Evaluation of riboflavin intakes and status of 20-64-year-old adults in South Korea. Nutrients 2014; 7(1): 253-264. https://doi.org/10.3390/nu7010253
  15. Boisvert WA, Mendoza I, Castaneda C, De Portocarrero L, Solomons NW, Gershoff SN, et al. Riboflavin requirement of healthy elderly humans and its relationship to macronutrient composition of the diet. J Nutr 1993; 123(5): 915-925. https://doi.org/10.1093/jn/123.5.915
  16. Horwitt MK, Harvey CC, Hills OW, Liebert E. Correlation of urinary excretion of riboflavin with dietary intake and symptoms of ariboflavinosis. J Nutr 1950; 41(2): 247-264. https://doi.org/10.1093/jn/41.2.247
  17. Lim WJ, Yoon JS. A Study on urinary riboflavin excretion of elderly women in Taegu and rural area in the suburbs of Taegu. Kor J Food Nutr. 1992; 21(4): 334-340.
  18. Korea Centers for Disease Control and Prevention. Report presentation of the Korea National Health and nutrition examination survey (KNHANES). Sejong: Ministry of Health and Welfare; 2020.
  19. Korea Centers for Disease Control and Prevention. Report presentation of the Korea National Health and Nutrition Examination Survey (KNHANES) VI: 2013-2015. Cheongju: Korea Centers for Disease Control and Prevention; 2015.
  20. Korea Centers for Disease Control and Prevention. Report presentation of the Korea National Health and Nutrition Examination Survey (KNHANES) VII: 2016-2017. Cheongju: Korea Centers for Disease Control and Prevention; 2017.
  21. Saedisomeolia A, Ashoori M. Riboflavin in human health: a review of current evidences. Adv Food Nutr Res 2018; 83: 57-81. https://doi.org/10.1016/bs.afnr.2017.11.002
  22. Ministry of Health and Welfare; The Korean Nutrition Society. Dietary reference intakes for Koreans 2015. Seoul: The Korean Nutrition Society; 2015.
  23. Zempleni J, Galloway JR, McCormick DB. Pharmacokinetics of orally and intravenously administered riboflavin in healthy humans. Am J Clin Nutr 1996; 63(1): 54-66. https://doi.org/10.1093/ajcn/63.1.54
  24. McCormick DB. Two interconnected B vitamins: riboflavin and pyridoxine. Physiol Rev 1989; 69(4): 1170-1198. https://doi.org/10.1152/physrev.1989.69.4.1170
  25. Schoenen J, Lenaerts M, Bastings E. High-dose riboflavin as a prophylactic treatment of migraine: results of an open pilot study. Cephalalgia 1994; 14(5): 328-329. https://doi.org/10.1046/j.1468-2982.1994.1405328.x
  26. Schoenen J, Jacquy J, Lenaerts M. Effectiveness of high-dose riboflavin in migraine prophylaxis. A randomized controlled trial. Neurology 1998; 50(2): 466-470. https://doi.org/10.1212/WNL.50.2.466
  27. Boehnke C, Reuter U, Flach U, Schuh-Hofer S, Einhaupl KM, Arnold G. High-dose riboflavin treatment is efficacious in migraine prophylaxis: an open study in a tertiary care centre. Eur J Neurol 2004; 11(7): 475-477. https://doi.org/10.1111/j.1468-1331.2004.00813.x
  28. Dugue PA, Bassett JK, Brinkman MT, Southey MC, Joo JE, Wong EM, et al. Dietary intake of nutrients involved in one-carbon metabolism and risk of gastric cancer: a prospective study. Nutr Cancer 2019; 71(4): 605-614. https://doi.org/10.1080/01635581.2019.1577982
  29. Agnoli C, Grioni S, Krogh V, Pala V, Allione A, Matullo G, et al. Plasma riboflavin and vitamin B-6, but not homocysteine, folate, or vitamin B-12, are inversely associated with breast cancer risk in the European prospective investigation into cancer and nutrition-varese cohort. J Nutr 2016; 146(6): 1227-1234. https://doi.org/10.3945/jn.115.225433
  30. Egnell M, Fassier P, Lecuyer L, Zelek L, Vasson MP, Hercberg S, et al. B-vitamin intake from diet and supplements and breast cancer risk in middle-aged women: Results from the prospective Nutrinet-Sante Cohort. Nutrients 2017; 9(5): 488. https://doi.org/10.3390/nu9050488
  31. Kweon SS, Shu XO, Xiang Y, Yang G, Ji BT, Li H, et al. One-carbon metabolism dietary factors and distal gastric cancer risk in Chinese women. Cancer Epidemiol Biomarkers Prev 2014; 23(7): 1374-1382. https://doi.org/10.1158/1055-9965.EPI-14-0038
  32. Sheng LT, Jiang YW, Pan XF, Feng L, Yuan JM, Pan A, et al. Association between dietary intakes of B vitamins in midlife and cognitive impairment in late-life: the Singapore Chinese Health Study. J Gerontol A Biol Sci Med Sci 2020; 75(6): 1222-1227. https://doi.org/10.1093/gerona/glz125
  33. Merle BM, Silver RE, Rosner B, Seddon JM. Dietary folate, B vitamins, genetic susceptibility and progression to advanced nonexudative age-related macular degeneration with geographic atrophy: a prospective cohort study. Am J Clin Nutr 2016; 103(4): 1135-1144. https://doi.org/10.3945/ajcn.115.117606
  34. Glaser TS, Doss LE, Shih G, Nigam D, Sperduto RD, Ferris FL 3rd, et al. The association of dietary lutein plus zeaxanthin and B vitamins with cataracts in the age-related eye disease study: AREDS report No. 37. Ophthalmology 2015; 122(7): 1471-1479. https://doi.org/10.1016/j.ophtha.2015.04.007
  35. Bertoia ML, Pai JK, Cooke JP, Joosten MM, Mittleman MA, Rimm EB, et al. Plasma homocysteine, dietary B vitamins, betaine, and choline and risk of peripheral artery disease. Atherosclerosis 2014; 235(1): 94-101. https://doi.org/10.1016/j.atherosclerosis.2014.04.010