• 제목/요약/키워드: Reducing $CO_2$

검색결과 1,308건 처리시간 0.025초

Performance of Magnesia Cement Using MgCO3 and Serpentine

  • Lee, Jong-Kyu;Soh, Jung-Sub
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.116-121
    • /
    • 2016
  • The amount of carbon dioxide ($CO_2$) released while producing building materials is substantial and has been targeted as a leading contributor to global climate change. One of the most typical methods of reducing $CO_2$ in building materials is the addition of slag and fly ash, like pozzolan material another method is to reduce $CO_2$ production by developing carbon negative cement. MgO-based cement from the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. It is also believed that adding reactive MgO to Portland-pozzolan cements can improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, basic research on magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as the main starting materials, as well as blast furnace slag for the mineral admixture, was carried out for industrial waste material recycling. In order to increase the overall hydration activity, $MgCl_2$ was also added. In the case of the addition of $MgCl_2$as accelerating admixture, there was a promoting effect on the compressive strength. This was found to be due to the production of needle-like dense Mg-Cl hydrates. Mgnesia cement has a high viscosity due to its high specific surface area therefore, when the PC-based dispersing agent was added at a level of more than 1.0%, it had the effect of improving fluidity. In particular, the addition of $MgCl_2$ in magnesia cement using $MgCO_3$and magnesium silicate ore (serpentine) as main starting materials led to a lower expansion ratio and an increase in the freeze-thaw resistance finally, the addition of $MgCl_2$ as accelerating admixture led to good overall durability.

산업부산물을 사용한 콘크리트 벽돌의 CO2 양생 후 탄산화 평가 (Carbonation Evaluation After CO2 Curing of Concrete Bricks Using Industrial by-products)

  • 문훈;이남곤;박정준;류금성;박기준;장인동
    • 한국건설순환자원학회논문집
    • /
    • 제11권4호
    • /
    • pp.373-380
    • /
    • 2023
  • 본 연구에서는 발전소에서 포집된 CO2의 활용을 위해 CO2 환경에서 양생된 콘크리트 벽돌의 탄산화를 분석하였다. 전기로 환원슬래그(ERS)와 전기로 산화슬래그를 사용하여 콘크리트 벽돌 시험체를 제작하고 20% 농도의 CO2 챔버에서 콘크리트 벽돌 시험체를 3일간 양생하여 항온항습 상태에서 양생된 시험체와 탄산화 수준을 비교하였다. 콘크리트 벽돌의 무게변화, 탄산화 깊이, 휨강도, 압축강도를 측정한 결과, CO2 환경에서 양생된 시험체는 무게의 2.4 % 수준의 CO2를 흡수하는 것으로 나타났다. ERS를 사용한 시험체가 탄산화 깊이가 가장 깊었으며, KS F 4004 콘크리트 벽돌의 규준을 만족하였다. 따라서 포집된 CO2는 콘크리트 벽돌의 CO2 양생 과정에 활용할 수 있을 것으로 기대된다.

백금산화촉매를 통한 이산화질소(NO2)의 저감 특성에 관한 실험적 연구 (Experimental Investigation on the Reduction Characteristics of Nitric Dioxide(NO2) over Platinum-based Oxidation Catalyst)

  • 김영득;조자윤;이정길;김우승
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.142-149
    • /
    • 2012
  • The reduction characteristics of $NO_2$ to NO are experimentally studied over a platinum-based catalyst, especially at lower temperatures below about $200^{\circ}C$. In the present work, two types of steady-state experiments, engine bench and synthetic gas bench tests, are carried out in sequence. Steady-state engine bench tests with the DOC mounted on a light duty 4-cylinder 2.0 liter turbocharged diesel engine are performed and prove that CO plays a major role in $NO_2$ abatement at temperatures below the light-off temperature of CO oxidation, about $200^{\circ}C$. Synthetic gas bench tests are then performed using synthetic gas mixtures with CO, $C_3H_6$, NO, $NO_2$, $O_2$, $H_2O$ and $N_2$ in the $140{\sim}450^{\circ}C$ T-range and show that both CO and $C_3H_6$ are capable of reducing $NO_2$. It is noted that the reaction rate of $NO_2$ with $C_3H_6$ is much higher than that with CO. At temperatures below about $200^{\circ}C$, the reduction of $NO_2$ to NO is promoted with increasing CO concentration and $NO_2$/$NO_X$ ratio and with decreasing $O_2$ concentration, as well as with the presence of $H_2O$.

소실모형이 탄소강 및 회주철 주물의 표면층 조직에 미치는 영향 (Effect of Evaporative Pattern on the Surface Layer Structures of Carbon Steel and Gray Iron Castings.)

  • 김지윤;조남돈
    • 한국주조공학회지
    • /
    • 제12권4호
    • /
    • pp.305-316
    • /
    • 1992
  • Steel and iron castings made with expandable polystylene (referred to hereafter as EPS) patterns are often affected by distinctive defects associated with incomplete decomposition of the EPS as the molds are filled with metal. The effects of practical factors on carbon pick-up were investigated on the specimens, by taking successive layers of swarf and analysis, whereas the lustrous carbon is determined by using combustion analysis. The quality of the castings, with particular reference to carbon pick-up in low carbon steel and lustrous carbon on gray iron, is further influenced to a significant extent by such practical factors as reduced pressure, the pouring temperature, the density of EPS pattern, the additive in coating and in pattern and the casting thickness. The rate at which carbon pick-up and lustrous carbon deposites are formed can be reduced by reducing the density of the pattern and also reducing pressure, especially by adding $Na_2CO_3$ in coating and in pattern to promote $CO_2$ evolution. The upper parts of castings obtained using EPS patterns are slightly higher in carbon pick-up and in lustrous carbon than other parts.

  • PDF

Sustainable concrete mix design for a target strength and service life

  • Tapali, Julia G.;Demis, Sotiris;Papadakis, Vagelis G.
    • Computers and Concrete
    • /
    • 제12권6호
    • /
    • pp.755-774
    • /
    • 2013
  • Considering the well known environmental issues of cement manufacturing (direct and indirect levels of $CO_2$ emissions), clinker replacement by supplementary cementing materials (SCM) can be a very promising first step in reducing considerably the associated emissions. However, such a reduction is possible up to a particular level of SCM utilization, influenced by the rate of its pozzolanic reaction. In this study a (4-step) structured methodology is proposed in order to be able to further adjust the concrete mix design of a particular SCM, in achieving additional reduction of the associated levels of $CO_2$ emissions and being at the same time accepted from a derived concrete strength and service life point of view. On this note, the aim of this study is twofold. To evaluate the environmental contribution of each concrete component and to provide the best possible mix design configuration, balanced between the principles of sustainability (low environmental cost) and durability (accepted concrete strength and service life ). It is shown that such a balance can be achieved, by utilising SCM by-products in the concrete mix, reducing in this way the fixed environmental emissions without compromising the long-term safety and durability of the structure.

HCCI 기관에 있어서의 층상 흡기를 통한 압력 상승률 저감에 대한 단위반응 수치 해석 (Potential of Thermal Stratification and Partial Fuel Stratification for Reducing Pressure Rise Rate in HCCI Engines)

  • 임옥택
    • 한국가스학회지
    • /
    • 제13권6호
    • /
    • pp.21-28
    • /
    • 2009
  • 본 연구의 목적은 온도 성층화와 농도 성층화의 효과가 HCCI 연소에서 압력상승률 저감과 배기가스에 어떤 영향을 미치는지 알아보는 것이다. 2단계 열발생이 생기는 디메틸에테르(Di-Methyl Ether, DME) 연료를 사용하였다. 수치계산은 멀티 존 모델과 상세 화학 반응 스킴을 이용하였다. 수치계산 결과, 온도 성층화와 농도 성층화는 연소기간을 길게 하여 압력상승률을 저감시키는 것을 확인하였다. 그러나 농도 성층화의 폭이 너무 커지면 오히려 일산화탄소와 질소산화물이 증가하였으며, 연소 효율은 감소하였다.

  • PDF

건물의 $CO_2$ 배출 저감 건축기술요소 제안에 관한 연구(공동주택을 중심으로) (A Study on the Proposal of Building Technologies for Reducing $CO_2$ Emission of Buildings(Focused on the Multi-Family Residential Buildings))

  • 이종식;강혜진;박진철;이언구
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.91-96
    • /
    • 2009
  • First, the base model of multi-family residential buildings are selected, and then the $CO_2$ reduction building technologies that are applicable for multi-family residential buildings are induced by analyzing the examples and then an optimal plan for when the $CO_2$ reduction building technologies can be integrated and applied to the base model was formulated. In the results of converting the energy consumption and reduction amount from the building technologies into $CO_2$ emissions to analyze the distribution ratio compared to the entire $CO_2$ emissions; the heat recovery ventilator is 0.5%, the photovoltaic system is $1.9%{\sim}5.9%$, the solar hot water heating system is $6.3%{\sim}13.1%$ and the ge thermal heat-pump system is 39.0% when both heating and hot water heating are applied. An optimally integrated application method for the building technologies is in charge of heating and hot water heating through the geothermal source heat pump system and in charge of the electricity load through the photovoltaic system(45.2%).

  • PDF

주거 에너지 소비에 따른 이산화탄소 배출량의 지역 격차와 격차요인 분석 -중국의 성(省)급을 대상으로 하여- (Regional Disparity and Its determinants of $CO_2$ Emissions from Residential Energy Consumption in China)

  • 이순성;이희연
    • 한국경제지리학회지
    • /
    • 제16권2호
    • /
    • pp.149-166
    • /
    • 2013
  • 본 논문은 중국의 가구부문에서의 주거 에너지 소비에 따른 이산화탄소 배출량의 지역 격차를 파악하고 지역격차에 영향을 미치는 요인을 추정하는 데 목적을 두었다. 2006~2011년 동안 30개 성급의 균형 패널 데이터를 토대로 1인당 이산화탄소 배출량을 종속변수로, 가구 특성 요인과 지역환경 특성 요인들을 설명변수로 하는 패널모델을 구축하였다. 모형의 추정 결과 가구 특성 중 대졸자 비율, 1인가구 비율, 여성경제활동비율, 노령인구 비율은 탄소 배출에 유의하게 영향을 미치는 것으로 나타났다. 또한 지역 특성 중 주거밀도가 높을수록 탄소배출량이 줄어드는 것으로 나타났다. 본 연구 결과는 중국에서 주거 에너지 소비로 인한 이산화탄소 배출량을 절감시키는 정책을 수립하는데 있어서 지역별 가구특성, 공급되는 에너지원, 그리고 지역의 기후특성에 따라 차별화되어야 한다는 정책적인 시사점을 제공하였다.

  • PDF

탄소 제로화를 위한 혁신 기술 연구: 건설 및 콘크리트 산업에서의 이산화탄소 저감 방안 동향 (Research on Innovation Technologies for Zero Carbon: Carbon Dioxide Reduction in Construction and Concrete Industries)

  • 김주현;박정준;김종규
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.549-563
    • /
    • 2022
  • Continuous global warming is causing ecosystem destruction and direct damage to human life. The main cause of global warming is greenhouse gases, which account for more than 90 % of carbon dioxide. The leaders of each country signed the Paris Agreement at the United Nations Convention on Climate Change (UNFCCC) to reduce greenhouse gas emissions. Currently, the total amount of CO2 emitted from South Korea is 664.7 million tons as of 2018, ranking eighth in the world. 37 % of South Korea's total CO2 emissions come from the construction & building field, especially the cement production, which is a construction material. Carbon reduction technologies can be largely divided into four types: carbon reduction (CC), carbon reduction and storage technology (CCS), carbon reduction and utilization technology (CCU), and carbon reduction, storage and utilization technology (CCUS). Overseas, CCUS technology is mainly applied to reduce and store CO2 emitted from construction and construction field. A technology for permanently storing CO2 through mineralization by capturing CO2 and utilizing CO2 into a cement production process was developed, and this technology is applied to the entire cement industry. However, the development of CCUS technology applicable to the cement industry is still insignificant in South Korea. In this study, carbon dioxide reduction technology and methods for reducing carbon dioxide emitted during the cement manufacturing process, which is the main component of concrete mainly used in civil engineering construction, were investigated. Overseas, it has reached the commercialization stage beyond the demonstration stage as a way to reduce carbon dioxide by vomiting carbonation reactions. Accordingly, if carbon dioxide reduction plan technology generated during cement manufacturing is developed based on domestic technology differentiated from foreign technology, it is expected to contribute one more step to the carbon neutrality policy.

Enhanced Carbon Dioxide Adsorption on Post-Synthetically Modified Metal-Organic Frameworks

  • Ko, Na-Keun;Kim, Ja-Heon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2705-2710
    • /
    • 2011
  • Four MOFs functionalized with 1-Me, 1-Pr, 1-Ph, and 1-$PhCF_3$ were prepared through post-synthetic modifications of a metal-organic framework (MOF), UMCM-1-$NH_2$ (1) with acetic, butyric, benzoic, and 4-(trifluoromethyl)benzoic anhydrides, respectively. Methane adsorption measurements between 253 and 298 K at pressures up to 1 bar indicated that both 1-Ph and 1-$PhCF_3$ adsorbed more $CH_4$ than the parent MOF, 1. All the functionalized MOFs adsorbed more $CO_2$ than 1 under conditions similar to the $CH_4$ test. The introduction of functional groups promoted adsorption of both $CH_4$ and $CO_2$ despite significantly reducing Brunauer-Emmet-Teller (BET) surface area: 4170 (1), 3550 (1-Me), 2900 (1-Pr), 3680 (1-Ph), and 3520 $m^2/g$ (1-$PhCF_3$). Electron-withdrawing aromatic groups (1-Ph, 1-$PhCF_3$) more effectively enhanced $CO_2$ adsorption than electron-donating alkyl groups (1-Me, 1-Pr). In particular, 1-Ph adsorbed 23% more $CO_2$ at 298 K and 50% more at 253 K than 1.