• Title/Summary/Keyword: Reduced-Order Model

Search Result 1,126, Processing Time 0.025 seconds

Tuning Algorithm for PID Controller Using Model Reduction in frequency Domain (주파수 영역에서의 모델 축소를 이용한 PID 제어기의 동조 알고리즘)

  • Cho, Joon-Ho;Choi, Jung-Nae;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2114-2116
    • /
    • 2001
  • Model reduction from high order systems to low order systems in frequency domain is considered four point (${\angle}$G(jw)=0, - ${\pi}/2$, ${\pi}$, and -3${\pi}$/2) instead of two point (${\angle}$G(jw) = - ${\pi}$/2,- ${\pi}$) of existing method in Nyquist curve. The Performances of reduced order model by proposed approach is similar to original model. In this paper, we proposed a new tuning algorithm for PID controller using model reduction in frequency domain. Simulations for some examples with varies dynamic characteristics are provided to show the effectiveness of the proposed tuning algorithm for PID controller using model reduction.

  • PDF

Effect of Flow Liners on Ship′s Wake Simulation in a Cavitation Tunnel

  • Lee, Jin-Tae;Kim, Young-Gi
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.41-56
    • /
    • 1995
  • Flew control devices, such as flow liners, are frequently introduced in a cavitation tunnel in order to reduce the tunnel blockage effect, when a three-dimensional wake distribution is simulated using a complete ship model or a dummy model. In order to estimate the tunnel wall effect and to evaluate the effect of flow liners on the simulated wake distribution, a surface panel method is adopted for the calculation of the flow around a ship model and flow liners installed in a rectangular test section off cavitation tunnel. Calculation results on the Sydney Express ship model show that the tunnel wall effect on the hull surface pressure distribution is negligible for less than 5% blockage and can be appreciable for more than 20% blockage. The flow liners accelerate the flow near the afterbody of the ship model, so that the pressure gradient there becomes more favorable and accordingly the boundary layer thickness would be reduced. Since the resulting wake distribution is assumed to resemble the full scale wake, flow liners can also be used to simulate an estimated full scale wake without modifying the ship model. Boundary taper calculation should be incorporated in order to correlate the calculated wake distribution with the measured one.

  • PDF

A study on aeroelastic forces due to vortex-shedding by reduced frequency response function

  • Zhang, Xin;Qian, Zhanying;Chen, Zhen;Zeng, Fanna
    • Wind and Structures
    • /
    • v.12 no.1
    • /
    • pp.63-76
    • /
    • 2009
  • The vortex-induced vibration of an ${\sqcap}$-shaped bridge deck sectional model is studied in this paper via the wind tunnel experiment. The vibratory behavior of the model shows that there is a transition of the predominant vibration mode from the vertical to the rotational degree of freedom as the wind speed increases gradually or vice versa as the wind speed decreases gradually. The vertical vibration is, however, much weaker in the latter case than in the former. This is a phenomenon which is difficult to model by existing parametric models for vortex-induced vibrations. In order to characterize the aeroelastic property of the ${\sqcap}$-shaped sectional model, a time domain force identification scheme is proposed to identify the time history of the aeroelastic forces. After the application of the proposed method, the resultant fluid forces are re-sampled in dimensionless time domain so that reduced frequency response function (RFRF) can be obtained to explore the properties of the vortex-induced wind forces in reduced frequency domain. The RFRF model is proven effective to characterize the correlation between the wind forces and bridge deck motions, thus can explain the aeroelastic behavior of the ${\sqcap}$-shaped sectional model.

An Experimental Study on the Lift and Thrust Generation of a Dragonfly-type Model (잠자리유형 모델의 추력 및 양력생성에 관한 실험적 연구)

  • Kim, Song-Hak;Chang, Jo-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.120-127
    • /
    • 2006
  • An experimental study was carried out in order to investigate the effects on the fore- and hind-wings of a dragonfly-type model. A model with two pairs of wing was developed to measure the lift and thrust of a dragonfly-type model. The fore-wing and hind-wing had incidences angle of $0^{\circ}\;and\;10^{\circ}$. The freestream velocity is 1.6m/sec and the corresponding chord Reynolds number was $Re=2.88{\times}10^3$. Also, these experiments were carried out with a phase difference of $90^{\circ}$ between the fore- and hind-wing, aerodynamic forces caused by fore-wing only and two pairs of wings were investigated according to the reduced frequency. The results show that the model with fore-wings only generates a thrust component; however, the dragonfly-type model with hind-wings with an incidence angle of $10^{\circ}$ generates a drag component. The total drag is also increased with reduced frequency due to the increased lift of hind-wings.

Design of a Model-Based Low-Order Disturbance Observer to Estimate a Sinusoidal Disturbance with Unknown Constant Offset (미지의 상수 오프셋을 갖는 삼각함수 외란 추정을 위한 모델기반 저차 외란 관측기 설계)

  • Lee, Cho-Won;Son, Young Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.652-658
    • /
    • 2016
  • In practical control systems differences between nominal and real systems arise from internal uncertainties and/or external disturbances. This paper presents a model-based low-order disturbance observer for a sinusoidal disturbance with unknown constant offset. By using the disturbance model of a biased harmonic signal, the proposed method can successfully estimate the biased sinusoidal disturbance with unknown amplitude and phase but known frequency. At the first stage of the observer design, a model-based disturbance observer is designed when all the system states are measurable. Next, a sufficient condition is presented for the proposed observer to estimate the sinusoidal disturbance with a minimal-order additional dynamics using only output measurement. Comparative computer simulations are performed to test the performance of the proposed method. The simulation results show the enhanced performance of the proposed disturbance observer.

Temporal Prediction of Ice Accretion Using Reduced-order Modeling (차원축소모델을 활용한 시간에 따른 착빙 형상 예측 연구)

  • Kang, Yu-Eop;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.147-155
    • /
    • 2022
  • The accumulated ice and snow during the operation of aircraft and railway vehicles can degrade aerodynamic performance or damage the major components of vehicles. Therefore, it is crucial to predict the temporal growth of ice for operational safety. Numerical simulation of ice is widely used owing to the fact that it is economically cheaper and free from similarity problems compared to experimental methods. However, numerical simulation of ice generally divides the analysis into multi-step and assumes the quasi-steady assumption that considers every time step as steady state. Although this method enables efficient analysis, it has a disadvantage in that it cannot track continuous ice evolution. The purpose of this study is to construct a surrogate model that can predict the temporal evolution of ice shape using reduced-order modeling. Reduced-order modeling technique was validated for various ice shape generated under 100 different icing conditions, and the effect of the number of training data and the icing conditions on the prediction error of model was analyzed.

SHM benchmark for high-rise structures: a reduced-order finite element model and field measurement data

  • Ni, Y.Q.;Xia, Y.;Lin, W.;Chen, W.H.;Ko, J.M.
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.411-426
    • /
    • 2012
  • The Canton Tower (formerly named Guangzhou New TV Tower) of 610 m high has been instrumented with a long-term structural health monitoring (SHM) system consisting of over 700 sensors of sixteen types. Under the auspices of the Asian-Pacific Network of Centers for Research in Smart Structures Technology (ANCRiSST), an SHM benchmark problem for high-rise structures has been developed by taking the instrumented Canton Tower as a host structure. This benchmark problem aims to provide an international platform for direct comparison of various SHM-related methodologies and algorithms with the use of real-world monitoring data from a large-scale structure, and to narrow the gap that currently exists between the research and the practice of SHM. This paper first briefs the SHM system deployed on the Canton Tower, and the development of an elaborate three-dimensional (3D) full-scale finite element model (FEM) and the validation of the model using the measured modal data of the structure. In succession comes the formulation of an equivalent reduced-order FEM which is developed specifically for the benchmark study. The reduced-order FEM, which comprises 37 beam elements and a total of 185 degrees-of-freedom (DOFs), has been elaborately tuned to coincide well with the full-scale FEM in terms of both modal frequencies and mode shapes. The field measurement data (including those obtained from 20 accelerometers, one anemometer and one temperature sensor) from the Canton Tower, which are available for the benchmark study, are subsequently presented together with a description of the sensor deployment locations and the sensor specifications.

Uncertainties and control of a 3-DOF active vibration isolation system (3자유도 능동형 제진 시스템의 불확실성과 제어)

  • Kim, Hwa-Soo;Pahk, Heui-Jae;Moon, Jun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.925-933
    • /
    • 2006
  • Using the physics-based model for the vibration isolation system, the model uncertainties are described. With the model including parameter perturbations, the robust controller to meet the robust performance and stability is designed through $\mu$-synthesis by DK-iteration. The order of controller is reduced by virtue of Hankel norm approximation technique to allow the efficient implementation in the real-time experimental environment without any performance degradation. The performance of the reduced $\mu$-controller is accessed in comparison with the original one. The experiments validate the superiority of the proposed control scheme against the model uncertainties and its applicability with varying payload.

  • PDF

Uncertainties and Control of a 3-DOF Active Vibration Isolation System (3자유도 능동형 제진 시스템의 불확실성과 제어)

  • Kim, Hwa-Soo;Pahk, Heui-Jae;Cho, Young-Man;Moon, Jun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1262-1271
    • /
    • 2006
  • Using the physics-based model for the vibration isolation system, the model uncertainties are described. With the model including parameter perturbations, the robust controller to meet the robust performance and stability is designed through $\mu$-synthesis by DK-iteration. The order of controller is reduced by virtue of Hankel norm approximation technique to allow the efficient implementation in the real-time experimental environment without any performance degradation. The performance of the reduced $\mu$-controller is accessed in comparison with the original one. The experiments validate the superiority of the proposed control scheme against the model uncertainties and its applicability with varying payload.

Vibration Analysis of a Cable Supported Wind Turbine Tower Model (케이블 지지된 풍력발전기 타워 구조 모델의 진동해석)

  • Kim, Seock-Hyun;Park, Mu-Yeol;Cui, C.X.
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.47-53
    • /
    • 2007
  • A theoretical model based on Rayleigh-Ritz method is proposed to predict the resonance frequency of a W/T(Wind Turbine) tower structure supported by guy cables. In order to verify the validity of the theoretical model, a reduced W/T tower system is manufactured and tested. Frequency response and mode data are determined by modal testing and finite element analysis is performed to calculate the natural frequency of the tower model. Numerical and experimental results are compared with those by the theoretical analysis. Parametric study by the theoretical model shows how the cable tension and cable elasticity influence the resonance frequency of the W/T tower structure. Finally, vibration response under various rotating speed is investigated to examine the possibility of severe resonance.

  • PDF