• Title/Summary/Keyword: Reduced integration

Search Result 486, Processing Time 0.024 seconds

Development of triangular flat-shell element using a new thin-thick plate bending element based on semiLoof constrains

  • Chen, Yong-Liang;Cen, Song;Yao, Zhen-Han;Long, Yu-Qiu;Long, Zhi-Fei
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.83-114
    • /
    • 2003
  • A new simple 3-node triangular flat-shell element with standard nodal DOF (6 DOF per node) is proposed for the linear and geometrically nonlinear analysis of very thin to thick plate and shell structures. The formulation of element GT9 (Long and Xu 1994), a generalized conforming membrane element with rigid rotational freedoms, is employed as the membrane component of the new shell element. Both one-point reduced integration scheme and a corresponding stabilization matrix are adopted for avoiding membrane locking and hourglass phenomenon. The bending component of the new element comes from a new generalized conforming Kirchhoff-Mindlin plate element TSL-T9, which is derived in this paper based on semiLoof constrains and rational shear interpolation. Thus the convergence can be guaranteed and no shear locking will happen. Furthermore, a simple hybrid procedure is suggested to improve the stress solutions, and the Updated Lagrangian formulae are also established for the geometrically nonlinear problems. Numerical results with solutions, which are solved by some other recent element models and the models in the commercial finite element software ABAQUS, are presented. They show that the proposed element, denoted as GMST18, exhibits excellent and better performance for the analysis of thin-think plates and shells in both linear and geometrically nonlinear problems.

CASE REPORT ON TREATMENT OF CLASS II MALOCCLUSION WITH TWIN BLOCK APPLIANCES (Twin Block을 이용한 II급 부정교합의 치료증례)

  • Park, Soo-Jin;Jang, Ki-Taeg;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.1
    • /
    • pp.134-143
    • /
    • 1998
  • Twin Blocks are simple bite-blocks that effectively modify the occlusal inclined plane to induce favorably directed occlusal forces by causing a functional mandibular displacement. These devices use upper and lower bite-blocks that engage on occlusal inclined planes. Twin Blocks use the forces of occlusion as the functional mechanism to correct the malocclusion. To get an excellent result in the treatment by using the Twin Block appliances, proper case selection must be needed. Twin Block treatment is performed in two stages. Twin Blocks are used in the active phase to correct the anteroposterior relationship and establish the correct vertical dimension. Once this phase is accomplished, the Twin Blocks are replaced with an upper Hawley type of appliance with an anterior inclined plane, which is then used to support the corrected position as the posterior teeth settle fully into occlusion. The Twin Block is the most comfortable, the most esthetic ane the most efficient of all the functional appliances. Twin Blocks have many advantages compared to other functional appliances. Patients can wear Twin Blocks 24 hours per day and can eat comfortably with the appliances in place. From the moment Twin Blocks are fitted, the appearance is noticeably improved. There is less interference with normal function. Integration with conventional fixed appliances is simpler than with any other functional appliance. Twin Blocks allow independent control of upper and lower arch width. Appliance design is easily modified for transverse and sigittal arch development. The authors treated Class II malocclusion with Twin Blocks. and the results as follows; 1. Rapid profile improvement was achieved in 2-3 months. 2. There was excellent patient cooperation. 3. Severe overjet and overbite were reduced. 4. Class II molar relationship was changed to Class I.

  • PDF

3-Dimensional Path Planning and Guidance using the Dubins Curve for an 3-DOF Point-mass Aircraft Model (Dubins 곡선을 이용한 항공기 3자유도 질점 모델의 3차원 경로계획 및 유도)

  • O, Su-Hun;Ha, Chul-Su;Kang, Seung-Eun;Mok, Ji-hyun;Ko, Sangho;Lee, Yong-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this paper, we integrate three degree of freedom(3DOF) point-mass model for aircraft and three-dimensional path generation algorithms using dubins curve and nonlinear path tracking law. Through this integration, we apply the path generation algorithm to the path planning, and verify tracking performance and feasibility of using the aircraft 3DOF point-mass model for air traffic management. The accuracy of modeling 6DOF aircraft is more accurate than that of 3DOF model, but the complexity of the calculation would be raised, in turn the rate of computation is more likely to be slow due to the increase of degree of freedom. These obstacles make the 6DOF model difficult to be applied to simulation requiring real-time path planning. Therefore, the 3DOF point-mass model is also sufficient for simulation, and real-time path planning is possible because complexity can be reduced, compared to those of the 6DOF. Dubins curve used for generating the optimal path has advantage of being directly available to apply path planning. However, we use the algorithm which extends 2D path to 3D path since dubins curve handles the two dimensional path problems. Control law for the path tracking uses the nonlinear path tracking laws. Then we present these concomitant simulation results.

A Compact C-Band Semi-Lumped Lowpass Filter with Broad Stopband Using a Chip Inductor (칩 인덕터를 사용하여 광대역 저지 특성을 갖는 소형 C-밴드 Semi-Lumped 저역 통과 여파기)

  • Jang, Ki-Eon;Lee, Gi-Moon;Kim, Ha-Chul;Choi, Hyun-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.12
    • /
    • pp.1359-1364
    • /
    • 2012
  • The C-band semi-lumped lowpass filter with broad stopband and compact size characteristic using chip inductor is proposed. To provide an additional attenuation pole in stopband by SRF, a separable inductor is added to proposed structure, and it has broad stopband characteristic. The third order elliptic function lowpass filter with chip inductor(L: 9.1 nH, SRF: 5.5 GHz, Q: 25) has insertion loss of 0.38 dB, cutoff frequency of 920 MHz, broad stopband(below 20 dB) of 1.43~7.8 GHz and the size is reduced 37.4 % compared to distributed inductor.

A Fault Detection and Exclusion Algorithm using Particle Filters for non-Gaussian GNSS Measurement Noise

  • Yun, Young-Sun;Kim, Do-Yoon;Kee, Chang-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.255-260
    • /
    • 2006
  • Safety-critical navigation systems have to provide 'reliable' position solutions, i.e., they must detect and exclude measurement or system faults and estimate the uncertainty of the solution. To obtain more accurate and reliable navigation systems, various filtering methods have been employed to reduce measurement noise level, or integrate sensors, such as global navigation satellite system/inertial navigation system (GNSS/INS) integration. Recently, particle filters have attracted attention, because they can deal with nonlinear/non-Gaussian systems. In most GNSS applications, the GNSS measurement noise is assumed to follow a Gaussian distribution, but this is not true. Therefore, we have proposed a fault detection and exclusion method using particle filters assuming non-Gaussian measurement noise. The performance of our method was contrasted with that of conventional Kalman filter methods with an assumed Gaussian noise. Since the Kalman filters presume that measurement noise follows a Gaussian distribution, they used an overbounded standard deviation to represent the measurement noise distribution, and since the overbound standard deviations were too conservative compared to the actual distributions, this degraded the integrity-monitoring performance of the filters. A simulation was performed to show the improvement in performance of our proposed particle filter method by not using the sigma overbounding. The results show that our method could detect smaller measurement biases and reduced the protection level by 30% versus the Kalman filter method based on an overbound sigma, which motivates us to use an actual noise model instead of the overbounding or improve the overbounding methods.

  • PDF

A Study on the WBI System Design & Implemented based on the Component (컴포넌트기반의 웹 기반 교육시스템 설계에 관한 연구)

  • Jeon, Ju-Hyeon;Hong, Chan-Gi
    • The KIPS Transactions:PartD
    • /
    • v.8D no.6
    • /
    • pp.673-680
    • /
    • 2001
  • When the developers develop the software, the cost and time of the software development can be reduced by using blocks that are implemented previously. We call these implemented blocks components. In the early stage of Web-based Instruction, it didn't gain preference in spite of it's benefit of convenience. The main reason is, I think, the lack of generality at the education system which eventually results in unsatisfactory facilities compared with the requirement of teachers and students. And the early systems don't make good use of the plenty data in distributed environment, and don't show so good reliablity due to lack of systematic design and development. In this paper, we suggest WBI developing technology using the concept of WBSE. WBI developing is consist of component of pre-developed education software, integration of component using its reusability, and production of more requirement-satisfactory education software.

  • PDF

Four-valued Hybrid FFT processor design using current mode CMOS (전류 모드 CMOS를 이용한 4치 Hybrid FFT 연산기 설계)

  • 서명웅;송홍복
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.1
    • /
    • pp.57-66
    • /
    • 2002
  • In this study, Multi-Values Logic processor was designed using the basic circuit of the electric current mode CMOS. First of all, binary FFT(Fast Fourier Transform) was extended and high-speed Multi-Valued Logic processor was constructed using a multi-valued logic circuit. Compared with the existing two-valued FFT, the FFT operation can reduce the number of transistors significantly and show the simplicity of the circuit. Moreover, for the construction of amount was used inside the FFT circuit with the set of redundant numbers like [0,1,2,3]. As a result, the defects in lines were reduced and it turned out to be effective in the aspect of normality an regularity when it was used designing VLSI(Very Large Scale Integration). To multiply FFT, the time and size of the operation was used as LUT(Look Up Table) Finally, for the compatibility with the binary system, multiple-valued hybrid-type FFT processor was proposed and designed using binary-four valued encoder, four-binary valued decoder, and the electric current mode CMOS circuit.

  • PDF

SPOT/VEGETATION-based Algorithm for the Discrimination of Cloud and Snow (SPOT/VEGETATION 영상을 이용한 눈과 구름의 분류 알고리즘)

  • Han Kyung-Soo;Kim Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.235-244
    • /
    • 2004
  • This study focuses on the assessment for proposed algorithm to discriminate cloudy pixels from snowy pixels through use of visible, near infrared, and short wave infrared channel data in VEGETATION-1 sensor embarked on SPOT-4 satellite. Traditional threshold algorithms for cloud and snow masks did not show very good accuracy. Instead of these independent masking procedures, K-Means clustering scheme is employed for cloud/snow discrimination in this study. The pixels used in clustering were selected through an integration of two threshold algorithms, which group ensemble the snow and cloud pixels. This may give a opportunity to simplify the clustering procedure and to improve the accuracy as compared with full image clustering. This paper also compared the results with threshold methods of snow cover and clouds, and assesses discrimination capability in VEGETATION channels. The quality of the cloud and snow mask even more improved when present algorithm is implemented. The discrimination errors were considerably reduced by 19.4% and 9.7% for cloud mask and snow mask as compared with traditional methods, respectively.

Elastic floor response spectra of nonlinear frame structures subjected to forward-directivity pulses of near-fault records

  • Kanee, Ali Reza Taghavee;Kani, Iradj Mahmood Zadeh;Noorzad, Assadollah
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.49-65
    • /
    • 2013
  • This article presents the statistical characteristics of elastic floor acceleration spectra that represent the peak response demand of non-structural components attached to a nonlinear supporting frame. For this purpose, a set of stiff and flexible general moment resisting frames with periods of 0.3-3.6 sec. are analyzed using forty-nine near-field strong ground motion records. Peak accelerations are derived for each single degree of freedom non-structural component, supported by the above mentioned frames, through a direct-integration time-history analysis. These accelerations are obtained by Floor Acceleration Response Spectrum (FARS) method. They are statistically analyzed in the next step to achieve a better understanding of their height-wise distributions. The factors that affect FARS values are found in the relevant state of the art. Here, they are summarized to evaluate the amplification and/or reduction of FARS values especially when the supporting structures undergo inelastic behavior. The properties of FARS values are studied in three regions: long-period, fundamental-period and short-period. Maximum elastic acceleration response of non-structural component, mounted on inelastic frames, depends on the following factors: inelasticity intensity and modal periods of supporting structure; natural period, damping ratio and location of non-structural component. The FARS values, corresponded to the modal periods of supporting structure, are strongly reduced beyond elastic domain. However, they could be amplified in the transferring period domain between the mentioned modal periods. In the next step, the amplification and/or reduction of FARS values, caused by inelastic behavior of supporting structure, are calculated. A parameter called the response acceleration reduction factor ($R_{acc}$), has been previously used for far-field earthquakes. The feasibility of extending this parameter for near-field motions is focused here, suggested repeatedly in the relevant sources. The nonlinearity of supporting structure is included in ($R_{acc}$) for better estimation of maximum non-structural component absolute acceleration demand, which is ordinarily neglected in the seismic design provisions.

신속한 3차원 전자탐사 모델링

  • Jo, In-Gi;Kim, Ha-Rim
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.1
    • /
    • pp.63-71
    • /
    • 2002
  • The integral equation method is a powerful tool for electromagnetic numerical modeling. But the difficulty of this technique is the size of their linear equations, which demands excessive memory and calculation time to invert. This limitation of the integral equation method becomes critical in inverse problem. To overcome this limitation, a lot of approximation and series methods, such as conventional Born, modifed Born and extended Born, were developed. But all the methods need volume integration of Green tensor, which is very time consuming. In electromagnetic theory, Green tensor rapidly decreases as the distance between source and field cell increases. Therefore, the source cell which are far away from the field cell does not make an effect on the electric field of the field cell. Consequently, by ignoring the effect of Green tensor due to far away source cells, computing time for electromagnetic numerical modeling can be reduced dramatically. Comparisons of this new method against a full integral equation, extended Born approximation and series code show that the method is accurate enough much less time consuming.

  • PDF