• Title/Summary/Keyword: Reduced beam section

Search Result 123, Processing Time 0.017 seconds

Cyclic performance and design recommendations of a novel weak-axis reduced beam section connection

  • Lu, Linfeng;Xu, Yinglu;Liu, Jie;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.337-353
    • /
    • 2018
  • In previous weak-axis moment connection tests, brittle fracture always initiated near the edge of the beam flange groove weld due to force flow towards the stiffer column flanges, which is the opposite pattern as strong-axis moment connections. As part of the China NSFC (51278061) study, this paper tested two full-scale novel weak-axis reduced beam section moment connections, including one exterior frame connection specimen SJ-1 under beam end monotonic loading and one interior frame joint specimen SJ-2 under column top cyclic loading. Test results showed that these two specimens were able to satisfy the demands of FEMA-267 (1995) or ANSI/AISC 341-10 (2010) without experiencing brittle fracture. A parametric analysis using the finite element software ABAQUS was carried out to better understand the cyclic performance of the novel weak-axis reduced beam section moment connections, and the influence of the distance between skin plate and reduced beam section, a, the length of the reduced beam section, b, and the cutting depth of the reduced beam section, c, on the cyclic performance was analyzed. It was found that increasing three parametric values reasonably is beneficial to forming beam plastic hinges, and increasing the parameter a is conducive to reducing stress concentration of beam flange groove welds while increasing the parameters b and c can only reduce the peak stress of beam flange groove welds. The rules recommended by FEMA350 (2000) are suitable for designing the proposed weak-axis RBS moment connection, and a proven calculation formulation is given to determine the thickness of skin plate, the key components in the proposed weak-axis connections. Based on the experimental and numerical results, a design procedure for the proposed weak-axis RBS moment connections was developed.

An Efficient Inelastic Analysis of a Moment Frame Steel Structure with Reduced Beam Section (Reduced Beam Section을 가진 철골모멘트 골조의 효율적인 비탄성 해석)

  • 조소훈;박찬헌;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.503-510
    • /
    • 2004
  • One of the methods improving the seismic behavior of a structure is the frame with reduced beam section (RBS) which cuts a segment of flanges of the beam near the beam-to-column connection so that the section with reduced flanges has smaller flexural strength than the beam end. It is difficult to analyze the RBS frame because RBS portion has circular-cut type flange. And inelastic response of the steel frame with the RBS is very sensitive to the RBS model. In this paper, the analytical models of RBS portion are investigated and the results of the inelastic analysis for RBS analytical models are compared and then the analytical model for RBS is determined based on the results of inelastic analysis. Inelastic behavior of the RBS frame and its dynamic characteristics are investigated for selected analytical model of RBS.

  • PDF

Experimentally investigation of replaceable reduced beam section utilizing beam splice connection

  • Yasin Onuralp Ozkilic;Mehmet Bakir Bozkurt
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.109-119
    • /
    • 2024
  • This study presents a replaceable reduced beam section (R-RBS) located at the column end in moment resisting frames (MRFs). An end of the R-RBS is connected to column by using end-plate moment connection and the other end of that is connected to main beam with beam splice connection. Therefore, the RBS that is expected to yield under an earthquake can be easily replaceable. Geometry of the RBS and the thickness of the beam splice connection are the prime variables of this study. A total of eight experimental test was carried out to examine the seismic performance of the proposed R-RBS with the connection details. The results obtained from experimental studies demonstrated that plate sizes of the beam splice connection significantly affect the seismic performance of RBSs used in MRFs.

Numerical investigation seismic performance of rigid skewed beam-to-column connection with reduced beam section

  • Zareia, Ali;Vaghefi, Mohammad;Fiouz, Ali R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.507-528
    • /
    • 2016
  • Reduced beam section (RBS) moment resisting connections are among the most economical and practical rigid steel connections developed in the aftermath of the 1994 Northridge and the 1995 Kobe earthquakes. Although the performance of RBS connection has been widely studied, this connection has not been subject to in the skewed conditions. In this study, the seismic performance of dogbone connection was investigated at different angles. The Commercial ABAQUS software was used to simulate the samples. The numerical results are first compared with experimental results to verify the accuracy. Nonlinear static analysis with von Mises yield criterion materials and the finite elements method were used to analyze the behavior of the samples The selected Hardening Strain of materials at cyclic loading and monotonic loading were kinematics and isotropic respectively The results show that in addition to reverse twisting of columns, change in beam angle relative to the central axis of the column has little impact on hysteresis response of samples. Any increase in the angle, leads to increased non-elastic resistance. As for Weak panel zone, with increase of the angle between the beam and the column, the initial submission will take place at a later time and at a larger rotation angle in the panel zone and this represents reduced amount of perpendicular force exerted on the column flange. In balanced and strong panel zones, with increase in the angle between the beam and the central axis of the column, the reduced beam section (RBS), reaches the failure limit faster and at a lower rotation angle. In connection of skewed beam, balanced panel zone, due to its good performance in disposition of plasticity process away from connection points and high energy absorption, is the best choice for panel zone. The ratio of maximum moment developed on the column was found to be within 0.84 to 1 plastic anchor point, which shows prevention of brittle fracture in connections.

Cyclic behavior of jumbo reduced beam section connections with heavy sections: Numerical investigation

  • Qi, Liangjie;Liu, Mengda;Shen, Zhangpeng;Liu, Hang
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.183-196
    • /
    • 2022
  • Reduced beam section (RBS) moment connections used in special moment resisting frames are currently limited to beam sections that are not larger than nominal depths of 920 mm, weight of 447 kg/m and flange thickness of 44 mm. Due to the higher demand for structural components with jumbo sections, which can potentially be applied in the transfer girders in long-span building structures, the newly available steel heavy members are promising. To address this issue, advanced numerical models are developed to fully evaluate the distribution of stresses and concentrations of plastic strains for such jumbo RBS connections. This paper first presents a brief overview of an experimental study on four specimens with large beam and column sections. Then, a numerical model that includes initial imperfections, residual stresses, geometric nonlinearity, and explicitly modeled welds is presented. The model is used to further explore the behavior of the test specimens, including distribution of stresses, distribution of plastic strains, stress triaxiality and potential for fracture. The results reveal that the stresses are highly non-uniform across the beam flange and, similarly, the plastic strains concentrate at the extreme fiber of the bottom flange. However, neither of these phenomena, which are primarily a function of beam flange thickness, is reflected in current design procedures.

A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections

  • Ozkilic, Yasin O.
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.353-370
    • /
    • 2020
  • This paper describes a new type of replaceable fuse for moment resisting frames. Column-tree connections with beam splice connections are frequently preferred in the moment resisting frames since they eliminate field welding and provide good quality. In the column-tree connections, a part of the beam is welded to the column in the shop and the rest of the beam is bolted with the splice connection in the field. In this study, a replaceable reduced beam section (R-RBS) connection is proposed in order to eliminate welding process and facilitate assembly at the site. In the proposed R-RBS connection, one end is connected by a beam splice connection to the beam and the other end is connected by a bolted end-plate connection to the column. More importantly is that the proposed R-RBS connection allows the replacement of the damaged R-RBS easily right after an earthquake. Pursuant to this goal, experimental and numerical studies have been undertaken to investigate the performance of the R-RBS connection. An experimental study on the RBS connection was used to substantiate the numerical model using ABAQUS, a commercially available finite element software. Additionally, five different finite element models were developed to conduct a parametric study. The results of the analysis were compared in terms of the moment and energy absorption capacities, PEEQ, rupture and tri-axiality indexes. The design process as well as the optimum dimensions of the R-RBS connections are presented. It was also demonstrated that the proposed R-RBS connection satisfies AISC criteria based on the nonlinear finite element analysis results.

Increasing plastic hinge length using two pipes in a proposed web reduced beam section, an experimental and numerical study

  • Zahrai, Seyed M.;Mirghaderi, Seyed R.;Saleh, Aboozar
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.421-433
    • /
    • 2017
  • Experimental and numerical studies of a newly developed Reduced Beam Section (RBS) connection, called Tubular Web RBS connection (TW-RBS) have been recently conducted. This paper presents experimental and numerical results of extending the plastic hinge length on the beam flange to increase energy dissipation of a proposed version of the TW-RBS connection with two pipes, (TW-RBS(II)), made by replacing a part of flat web with two steel tubular web at the desirable location of the beam plastic hinge. Two deep-beam specimens with two pipes are prepared and tested under cyclic loads. Obtained results reveal that the TW-RBS(II) like its type I, increases story drift capacity up to 6% in deep beam much more than that stipulated by the current seismic codes. Based on test results, the proposed TW-RBS(II) helps to dissipate imposed energy up to 30% more than that of the TW-RBS(I) specimens at the same story drift and also reduces demands at the beam-to-column connection up to 30% by increasing plastic hinge length on the beam flange. The TW-RBS(II) specimens are finally simulated using finite element method showing good agreement with experimental results.

Experimental study on innovative tubular web RBS connections in steel MRFs with typical shallow beams

  • Saleh, Aboozar;Zahrai, Seyed M.;Mirghaderi, Seyed R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.785-808
    • /
    • 2016
  • An innovative Reduced Beam Section (RBS) connection, called Tubular Web RBS connection (TW-RBS), has been recently introduced and its performance has been numerically investigated in some earlier studies. The TW-RBS connection is a kind of accordion-web RBS connection in which part of the flat web of the beam is replaced by a steel tube at the expected region of the plastic hinge. This paper presents experimental results of three TW-RBS connections under cyclic loading. Obtained results indicated that TW-RBS reduces contribution of the beam web to the whole moment strength and creates a ductile fuse far from components of the beam-to-column connection. Besides, TW-RBS connection can increase story drift capacity up to 9% in the case of shallow beams which is much more than those stipulated by the current seismic codes. Based on the experimental results, the tubular web in the plastic hinge region improves lateral-torsional buckling stability of the beam such that only local buckling of the beam flange at the center of the reduced section was observed during the tests. In order to achieve a better understanding, behavior of all TW-RBS specimens are also numerically investigated and compared with those of experimental results.

Experimental and numerical evaluation of rigid connection with reduced depth section

  • Garoosi, Allah Reza Moradi;Roudsari, Mehrzad Tahamouli;Hashemi, Behrokh Hosseini
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.863-875
    • /
    • 2020
  • After medium or strong earthquakes, damage in the reduced portion of RBS connections occurs due to plastic deformations. The purpose of this paper is to numerically and experimentally investigate the reduced depth section connection as a replaceable fuse. In this regard, three commonly used rigid connections with RBS, a replaceable fuse with RBS, and a replaceable fuse with Reduced Depth Section (RDS-F) were evaluated. All specimens were subjected to quasi-static cyclic load until failure. Although the final strength of the RDS-F is lower than that of the other two, laboratory results showed that it had the maximum ductility among the three samples. The numerical models of all three laboratory samples were constructed in ABAQUS, and the results were verified with great accuracy. The results of more than 28 numerical analyses showed that the RDS-F sample is more ductile than the other specimens. Moreover, the thickness of the web and the plastic section modulus increasing, the final strength would be equal to the other specimens. Therefore, the modified RDS-F with replaceability after an earthquake can be a better alternative for RBS connections.

A Balanced Panel Zone Strength Criterion for Reduced Beam Section Steel Moment Connections (보 플랜지 절취형 (RBS) 철골 모멘트 접합부의 균형패널존 강도)

  • Lee, Cheol Ho;Kim, Jae Hoon;Jeon, Sang Woo;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2006
  • This paper presents test results on reduced beam section (RBS)program addressed panel zone (PZ) strength as the key variables. PZ strength has been much debated issue for several decades. A desirable range of PZ strength has not yet been proposed despite the fact that a significant amount of RBS test data is available. Test results from this study and by others showed that panel zones could easily develop a plastic rotation of 0.01 radian without causing distress to the beam flange groove welds. At this deformation level, the amount of beam distortion (i.e., buckling) was about one half that developed in strong PZ specimens. A criterion for a balanced PZ strength that improves the plastic rotation capacity while reducing the amount of beam buckling is proposed.