• Title/Summary/Keyword: Reduced Sensor Condition

Search Result 63, Processing Time 0.026 seconds

Development of Communication Module Based on IEEE 802.11a/g for u-TSN Service (u-TSN서비스를 위한 IEEE 802.11a/g 기반 통신모듈 개발)

  • Bae, Jeong-Kyu;Woo, Ri-Na-Ra;Song, Jung-Hoon;Ahn, Tae-Sik;Han, Dong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.117-124
    • /
    • 2009
  • In this paper, we have developed communication modules for ubiquitous transportation sensor network (u-TSN). The developed module can be used for intelligent transportation services. The developed systems are based on IEEE 802.11a and IEEE 802.11g technologies for vehicle and infrastructure systems, respectively. We have found that the throughput for the developed systems is at maximum around 15 Mbps. It is reduced to 10 Mbps at a long distance and high speed condition. The performance is enough to support traffic control services in dense traffic condition.

A Study on the Fabrication of Piezoelectric Organic Thin Films by using Physical Vapor Deposition Method and Sensor Characteristics (진공증착법을 이용한 압전 유기 박막의 제조와 센서 특성에 관한 연구)

  • Park, Su-Hong;Lim, Eung-Choon;Park, Jong-Chan;Lee, Duck-Chool
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.35-39
    • /
    • 2001
  • The purpose of this paper is improvement the piezoelectric of Polyvinylidene fluoride(PVDF) organic thin films is fabricated by vapor deposition method. The piezoelectric of PVDF organic thin films attributed to dipole orientation in crystalline region. Also, the piezoelectric characteristic reduced that dipole moments orientation in crystalline region interfered with impurity carriers. Therefore, PVDF organic thin films fabricated with high substrate temperature condition for crystallinity improvement. The crystallinity of PVDF organic thin films fabricated by this condition increase from 47 to 67.8%. The ion density of PVDF organic thin films fabricated by substrate temperature variation from $30^{\circ}C$ to $105^{\circ}C$ decreased from $1.62{\times}10^{16}cm^3$ to $6.75{\times}10^{11}cm^3$ when temperature and frequency were $100^{\circ}C$, 10Hz, respectively. The $d_{33}$ and piezo-voltage coefficient of PVDF organic thin films increased from 20pPC/N to 33pC/N and $162.9{\times}10^{-3}V{\cdot}m/N$ to $283.2{\times}10^{-3}V{\cdot}m/N$, respectively. For the sake of the applications of piezoelectric sensor, we analyzed the output voltage characteristic as a function of the distance between an oscillator of 28kHz and PVDF organic thin film transducer. From this, we found that the output voltage is inversely proportional to the distance. At this time, the period was about $35.798{\mu}s$ and equal the oscillator frequency.

  • PDF

IRI estimation using analysis of dynamic tire pressure and axle acceleration

  • Zhao, Yubo;McDaniel, J. Gregory;Wang, Ming L.
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.151-161
    • /
    • 2017
  • A new method is developed to estimate road profile in order to estimate IRI based on the ASTM standard. This method utilizes an accelerometer and a Dynamic Tire Pressure Sensor (DTPS) to estimate road roughness. The accelerometer measures the vertical axle acceleration. The DTPS, which is mounted on the tire's valve stem, measures dynamic pressure inside the tire while driving. Calibrated transfer functions are used to estimate road profile using the signals from the two sensors. A field test was conducted on roads with different quality conditions in the city of Brockton, MA. The IRI values estimated with this new method match the actual road conditions measured with Pavement Condition Index (PCI) based on the ASTM standard, images taken from an onboard camera and passengers' perceptions. IRI has negative correlation with PCI in general since they have overlapping features. Compared to the current method of IRI measurement, the advantage of this method is that a) the cost is reduced; b) more space is saved; c) more time is saved; and d) mounting the two sensors are universally compatible to most cars and vans. Therefore, this method has the potential to provide continuous and global monitoring the health of roadways.

Development of A Laser Cladding Process Monitoring System (I) -Extraction of optimal process variables (레이저클래딩 공정 모니터링 시스템 개발 (I) - 최적공정변수 추출)

  • 오기석;윤길상;조명우;김문기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.89-92
    • /
    • 2000
  • Laser claddmg 1s thc deposition of material on the surface of a part or workpiece. Cladding of metals produces a 100% dense metallurgically-bonded coating with minimal dilution for enhanced corrosion, abrasion and wear resistance. Despite of minimal heat Input and reduced processing time, cladding quality 1s affected by various process condition such as laser power and feed rate. Therefore, it is necessary to develop the momtoring and control methods of laser cladding process for the best cladding quality. In this paper, laser cladding monitoring system using CCD camera for measuring cladding pool shape, and photo-diode sensor for detecting optical signal emitted from the cladding front is introduced The variables extracted using this system can be apphed to control the laser cladding system to achieve the best claddmg results..

  • PDF

A Study on the Linear Motor Control System (니리어모터 이송계 제어 특성분석에 관한 연구)

  • Yoo, Song-Min
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.466-471
    • /
    • 2003
  • In order to analyze linear motor driven feed system, preliminary studies have been conducted focusing on the performance evaluation of the system based on the various combination of control gain along with acceleration. Tentative simulation revealed that due to the complexity of control system reduced number of control condition is recommended. Actual machining process with conventional feed system using endmill tool was employed as a preliminary study. Several sensing methods including AE, acceleration sensors and tool dynamometer were used. Results revealed the consistency in AE and cutting resistance. There were inconsistent empirical results in accelerometer probably due to the insensitivity of the sensor signal with respect to the experimental system

  • PDF

Walking Assistive Shoes for Visually Impaired Person Using Infrared Sensor and Pressure Sensor (적외선 센서와 압력센서를 이용한 시각장애인용 보행보조신발)

  • Yang, Chang-Min;Jung, Ji-Yong;Kim, Jung-Ja
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.2
    • /
    • pp.147-156
    • /
    • 2017
  • The white cane, walking assistive device of visually impaired person, has disadvantages for acquiring the information by contacting obstacles directly and detecting low obstacle on the ground. Recently, new devices have been developing to solve these problems, but these were not widely used due to high price and appearance. Therefore, in this study, we developed two types of walking assistive shoes which were manufactured with infrared sensors, pressure sensors and vibrating motors. Two types of shoes were classified with single sensor (SS) and double sensor (DS) type according to the number of infrared sensor. To evaluate the effectiveness, we compared required time and number of collisions during walking with walking assistive shoes and white cane on obstacle area. As the results, required time was increased than white cane while number of collisions was decreased when walking with developed walking assistive shoes. In addition, required time and number of collisions was more reduced when using walking assistive device than white cane. Therefore, we suggests that developed walking assistive shoes can a great help to provide safe walking condition and reducing time to adapt new types of walking assistive shoes.

Gas Diffusion Tube Dimension in Sensor-Controlled Fresh Produce Container System to Maintain the Desired Modified Atmosphere

  • Jo, Yun Hee;An, Duck Soon;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.2
    • /
    • pp.61-65
    • /
    • 2013
  • Modified atmosphere (MA) of reduced $O_2$ and elevated $CO_2$ concentrations has been used for keeping the quality of fresh produce and extending the shelf life. As a way to attain the beneficial MA package around the produce, a gas diffusion tube or perforation can be attached onto the container and controlled on real time in its opening/closing responding to $O_2$ and $CO_2$ concentrations measured by gas sensors. The timely-controlled opening of the gas diffusion tube can work in harmony with the produce respiration and help to create the desired MA. By use of the mathematical modeling, the effect of tube dimension on the controlled container atmosphere was figured out in this study. Spinach and king oyster mushroom were used as typical commodities for designing the model container system (0.35 and 0.9 kg in 13 L, respectively) because of their respiration characteristics and the optimal MA condition ($O_2$ 7~10%/$CO_2$ 5~10% for spinach; $O_2$ 2~5%/$CO_2$ 10~15% for mushroom). With a control logic for the gas composition to stay as close as possible to optimum MA window without invading injurious low $O_2$ and/or high $CO_2$ concentrations, the atmosphere of the sensor-controlled container could stay at its lower $O_2$ boundary or upper $CO_2$ limit under certain tube dimensional conditions. There were found to be the ranges of the tube diameter and length allowing the beneficial MA. The desired range of the tube dimension for spinach consisted of combinations of larger diameter and shorter length in the window of 0.3~2 cm diameter and 0.2~10 cm length. Similarly, that for king oyster mushroom was combinations of larger diameter and shorter length in the window of 0.9~2 cm diameter and 0.2~3 cm in length. Clear picture on generally affordable tube dimension range may be formulated by further study on a wide variety of commodity and pack conditions.

  • PDF

Correlation Analysis of Flow Characteristics Downstream of a Double Bent Pipe and Mounting Positions of Ultrasonic Flowmeter (곡관하류의 유동특성과 초음파유량계 설치위치의 상관관계 분석)

  • Lee, Dong Keun;Cho, Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.1037-1046
    • /
    • 2013
  • In this study, the establishment of the criteria for accurate measurement is investigated via a statistical analysis of experimental results. The magnitude of influence on measurement errors is severely affected by the number of paths, mounting angle of sensor, straight pipe length in sequence, and Reynolds number. Three-dimensional numerical analysis has been conducted to understand the flow patterns downstream of a double bent pipe. Numerical analysis shows that the results well agreed with the experimental ones in case of a sensor mounting angle of $0^{\circ}$ and L/D = 3, 5 of $45^{\circ}$, $135^{\circ}$ in a single path. As a result, when the Reynolds number is 700,000-1,400,000, the sensor error of a single-path ultrasonic flowmeter is reduced with the mounting condition of L/D = 3, $45^{\circ}$.

Design and Implementation of Human and Object Classification System Using FMCW Radar Sensor (FMCW 레이다 센서 기반 사람과 사물 분류 시스템 설계 및 구현)

  • Sim, Yunsung;Song, Seungjun;Jang, Seonyoung;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.364-372
    • /
    • 2022
  • This paper proposes the design and implementation results for human and object classification systems utilizing frequency modulated continuous wave (FMCW) radar sensor. Such a system requires the process of radar sensor signal processing for multi-target detection and the process of deep learning for the classification of human and object. Since deep learning requires such a great amount of computation and data processing, the lightweight process is utmost essential. Therefore, binary neural network (BNN) structure was adopted, operating convolution neural network (CNN) computation in a binary condition. In addition, for the real-time operation, a hardware accelerator was implemented and verified via FPGA platform. Based on performance evaluation and verified results, it is confirmed that the accuracy for multi-target classification of 90.5%, reduced memory usage by 96.87% compared to CNN and the run time of 5ms are achieved.

The fabrication and evaluation of CdS sensor for diagnostic x-ray detector application (진단 X선 검출기 적용을 위한 CdS 센서 제작 및 성능 평가)

  • Park, Ji-Koon;Lee, Mi-Hyun;Choi, Young-Zoon;Jung, Bong-Zae;Choi, Il-Hong;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • Recently, various semiconductor compounds as radiation detection material have been researched for a diagnostic x-ray detector application. In this paper, we have fabricated the CdS detecton sensor that has good photosensitivity and high x-ray absorption efficiency among other semiconductor compounds, and evaluated the application feasibility by investigating the detection properties about energy range of diagnostic x-ray generator. We have fabricated the line voltage selector(LCV) for a signal acquisition and quantities of CdS sensor, and designed the voltage detection circuit and rectifying circuit. Also, we have used a relative relation algorithm according to x-ray exposure condition, and fabricated the interface board with DAC controller. Performance evaluation was investigated by data processing using ANOVA program from voltage profile characteristics according to resistive change obtained by a tube voltage, tube current, and exposure time that is a exposure condition of x-ray generator. From experimental results, an error rates were reduced according to increasing of a tube voltage and tube current, and a good properties of 6%(at 90 kVp) and 0.4%(at 320 mA) ere showed. and coefficient of determination was 0.98 with relative relation of 1:1. The error rate according to x-ray exposure time showed exponential reduction because of delayed response velocity of CdS material, and the error rate has 2.3% at 320 msec. Finally, the error rate according to x-ray dose is below 10%, and a high relative relation was showed with coefficient of determination of 0.9898.