• Title/Summary/Keyword: Reduced Rank Model

Search Result 32, Processing Time 0.021 seconds

Variable Selection with Nonconcave Penalty Function on Reduced-Rank Regression

  • Jung, Sang Yong;Park, Chongsun
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.1
    • /
    • pp.41-54
    • /
    • 2015
  • In this article, we propose nonconcave penalties on a reduced-rank regression model to select variables and estimate coefficients simultaneously. We apply HARD (hard thresholding) and SCAD (smoothly clipped absolute deviation) symmetric penalty functions with singularities at the origin, and bounded by a constant to reduce bias. In our simulation study and real data analysis, the new method is compared with an existing variable selection method using $L_1$ penalty that exhibits competitive performance in prediction and variable selection. Instead of using only one type of penalty function, we use two or three penalty functions simultaneously and take advantages of various types of penalty functions together to select relevant predictors and estimation to improve the overall performance of model fitting.

Joint Test for Seasonal Cointegrating Ranks

  • Seong, Byeong-Chan;Yi, Yoon-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.719-726
    • /
    • 2008
  • In this paper we consider a joint test for seasonal cointegrating(CI) ranks that enables us to simultaneously model cointegrated structures across seasonal unit roots in seasonal cointegration. A CI rank test for a single seasonal unit root is constructed and extended to a joint test for multiple seasonal unit roots. Their asymptotic distributions and selected critical values for the joint test are obtained. Through a small Monte Carlo simulation study, we evaluate performances of the tests.

A Speaker Pruning Method for Real-Time Speaker Identification System

  • Kim, Min-Joung;Suk, Soo-Young;Jeong, Jong-Hyeog
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.2
    • /
    • pp.65-71
    • /
    • 2015
  • It has been known that GMM (Gaussian Mixture Model) based speaker identification systems using ML (Maximum Likelihood) and WMR (Weighting Model Rank) demonstrate very high performances. However, such systems are not so effective under practical environments, in terms of real time processing, because of their high calculation costs. In this paper, we propose a new speaker-pruning algorithm that effectively reduces the calculation cost. In this algorithm, we select 20% of speaker models having higher likelihood with a part of input speech and apply MWMR (Modified Weighted Model Rank) to these selected speaker models to find out identified speaker. To verify the effectiveness of the proposed algorithm, we performed speaker identification experiments using TIMIT database. The proposed method shows more than 60% improvement of reduced processing time than the conventional GMM based system with no pruning, while maintaining the recognition accuracy.

Rank-weighted reconstruction feature for a robust deep neural network-based acoustic model

  • Chung, Hoon;Park, Jeon Gue;Jung, Ho-Young
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.235-241
    • /
    • 2019
  • In this paper, we propose a rank-weighted reconstruction feature to improve the robustness of a feed-forward deep neural network (FFDNN)-based acoustic model. In the FFDNN-based acoustic model, an input feature is constructed by vectorizing a submatrix that is created by slicing the feature vectors of frames within a context window. In this type of feature construction, the appropriate context window size is important because it determines the amount of trivial or discriminative information, such as redundancy, or temporal context of the input features. However, we ascertained whether a single parameter is sufficiently able to control the quantity of information. Therefore, we investigated the input feature construction from the perspectives of rank and nullity, and proposed a rank-weighted reconstruction feature herein, that allows for the retention of speech information components and the reduction in trivial components. The proposed method was evaluated in the TIMIT phone recognition and Wall Street Journal (WSJ) domains. The proposed method reduced the phone error rate of the TIMIT domain from 18.4% to 18.0%, and the word error rate of the WSJ domain from 4.70% to 4.43%.

Effects of the Misspecification of Cointegrating Ranks in Seasonal Models

  • Seong, Byeong-Chan;Cho, Sin-Sup;Ahn, Sung-K.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.5
    • /
    • pp.783-789
    • /
    • 2008
  • We investigate the effects of the misspecification of cointegrating(CI) ranks at other frequencies on the inference of seasonal models at the frequency of interest; our study includes tests for CI ranks and estimation of CI vectors. Earlier studies focused mostly on a single frequency corresponding to one seasonal root at a time, ignoring possible cointegration at the remaining frequencies. We investigate the effects of the mis-specification, especially in finite samples, by adopting Gaussian reduced rank(GRR) estimation by Ahn and Reinsel (1994) that considers cointegration at all frequencies of seasonal unit roots simultaneously. It is observed that the identification of the seasonal CI rank at the frequency of interest is sensitive to the mis-prespecification of the CI ranks at other frequencies, mainly when the CI ranks at the remaining frequencies are underspecified.

Reduced Rank Eigen-Space Beamforming for Adaptive Array Systems (적응형 배열 안테나를 위한 감소 차수 고유 공간 빔형성 알고리즘)

  • Hyeon, Seung-Heon;Choi, Seung-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4C
    • /
    • pp.336-341
    • /
    • 2008
  • In this paper, beamforming algorithm is proposed which can obtain diversity gain in beamforming system that deploy antenna elements with half-wavelength. The proposed algorithm provides beam-pattern using eigen-vectors that span received signal subspace. The criterion to decide optimal rank of eigen-space used for beamforming is also proposed. A beamforming system applied the proposed algorithm shows better performance with diversity gain as getting larger angle spread. This paper provides a description of proposed algorithm with analysis of the performance using various computer simulations.

Common Feature Analysis of Economic Time Series: An Overview and Recent Developments

  • Centoni, Marco;Cubadda, Gianluca
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.415-434
    • /
    • 2015
  • In this paper we overview the literature on common features analysis of economic time series. Starting from the seminal contributions by Engle and Kozicki (1993) and Vahid and Engle (1993), we present and discuss the various notions that have been proposed to detect and model common cyclical features in macroeconometrics. In particular, we analyze in details the link between common cyclical features and the reduced-rank regression model. We also illustrate similarities and differences between the common features methodology and other popular types of multivariate time series modelling. Finally, we discuss some recent developments in this area, such as the implications of common features for univariate time series models and the analysis of common autocorrelation in medium-large dimensional systems.

Compressed Representation of CNN for Image Compression in MPEG-NNR (MPEG-NNR의 영상 압축을 위한 CNN 의 압축 표현 기법)

  • Moon, HyeonCheol;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.84-85
    • /
    • 2019
  • MPEG-NNR (Compression of Neural Network for Multimedia Content Description and Analysis) aims to define a compressed and interoperable representation of trained neural networks. In this paper, we present a low-rank approximation to compress a CNN used for image compression, which is one of MPEG-NNR use cases. In the presented method, the low-rank approximation decomposes one 2D kernel matrix of weights into two 1D kernel matrix values in each convolution layer to reduce the data amount of weights. The evaluation results show that the model size of the original CNN is reduced to half as well as the inference runtime is reduced up to about 30% with negligible loss in PSNR.

  • PDF

Estimation of Seasonal Cointegration under Conditional Heteroskedasticity

  • Seong, Byeongchan
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.615-624
    • /
    • 2015
  • We consider the estimation of seasonal cointegration in the presence of conditional heteroskedasticity (CH) using a feasible generalized least squares method. We capture cointegrating relationships and time-varying volatility for long-run and short-run dynamics in the same model. This procedure can be easily implemented using common methods such as ordinary least squares and generalized least squares. The maximum likelihood (ML) estimation method is computationally difficult and may not be feasible for larger models. The simulation results indicate that the proposed method is superior to the ML method when CH exists. In order to illustrate the proposed method, an empirical example is presented to model a seasonally cointegrated times series under CH.

Node-reduction Model of Large-scale Network Grape (대형 회로망 그래프 마디축소 모델)

  • Hwang, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.2
    • /
    • pp.93-99
    • /
    • 2001
  • A new type geometric and mathematical network reduction model is introduced. Large-scale network is analyzed with analytic approach. The graph has many nodes, branches and loops. Circuit equation are obtained from these elements and connection rule. In this paper, the analytic relation between voltage source has a mutual different graphic property. Node-reduction procedure is achieved with this circuit property. Consequently voltage source value is included into the adjacent node-analyzing equation. A resultant model equations are reduced as much as voltage source number. Matrix rank is (n-1-k), where n, k is node and voltage source number. The reduction procedure is described and verified with geometric principle and circuit theory. Matrix type circuit equation can be composed with this technique. The last results shall be calculated by using computer.

  • PDF