• Title/Summary/Keyword: Redox of iron oxide

Search Result 19, Processing Time 0.029 seconds

Hydrogen Storage Characteristics Using Redox of $M/Fe_2O_3$ (M = Rh, Ce and Zr) Mixed Oxides ($M/Fe_2O_3$ (M = Rh, Ce 및 Zr) 혼합 산화물의 산화-환원을 이용한 수소 저장 특성)

  • Ryu, Jae-Chun;Lee, Dong-Hee;Kim, Young-Ho;Yang, Hyun-Soo;Park, Chu-Sik;Wang, Gab-Jin;Kim, Jong-Won
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2006
  • [ $M/Fe_2O_3$ ] (M=Rh, Ce and Zr) mixed oxides were prepared using urea method to develop a medium for chemical hydrogen storage by their redox cycles. And their redox behaviors by repeated cycles were studied using temperature programmed reaction(TPR) technique. Additives such as Rh, Ce and Zr were added to iron oxides in order to lower the reaction temperature for reduction by hydrogen and re-oxidation by water-splitting. From the results, concentration of urea used as a precipitant had little effect on particle size and reduction property of iron oxide. TPR patterns of iron oxide consisted of two reduction peaks due to the course of $Fe_2O_3\;{\rightarrow}\;Fe_3O_4\;{\rightarrow}\;Fe$. The results of repeated redox tests showed that Rh added to iron oxide have an effect on lowering the re-oxidation temperature by water-splitting. Meanwhile, Ce and Zr additives played an important role in prevention of deactivation by repeated cycles. Finally, Fe-oxide(Rh, Ce, Zr) sample added with Rh, Ce and Zr showed the lowest re-oxidation temperature by water-splitting and maintained high $H_2$ recovery in spite of the repeated redox cycles. Consequently, it is expected that Fe-oxide(Rh, Ce, Zr) sample can be a feasible medium for chemical hydrogen storage using redox cycle of iron oxide.

The effect of Rh/Ce/Zr additives on the redox cycling of iron oxide for hydrogen storage (산화철의 환원-산화 반응을 이용한 수소저장에 미치는 Rh/Ce/Zr의 효과)

  • Lee, Dong-Hee;Cha, Kwang-Seo;Park, Chu-Sik;Kang, Kung-Soo;Kim, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.49-52
    • /
    • 2007
  • We investigated hydrogen storage and production properties using redox system of iron oxide($Fe_{3}O_{4}$ + $4H_{2}$ ${\leftrightarrows}$ 3Fe + $4H_{2}O$) modified with rhodium, ceria and zirconia under atmospheric pressure. Reduction of iron oxide with hydrogen(hydrogen storage) and re-oxidation of reduced iron oxide with steam(hydrogen evolution) was carried out using a temperature programmed reaction(TPR) technique. On the temperature programmed studies, the effects of amounts of cerium and zirconium on the re-oxidation rate of partial reduced iron oxides were increased with increasing metal additives amount, but the rhodium amount showed little effect on the re-oxidation rate. On the thermal studies, the re-oxidation rates were enhanced with increasing temperature(300 $^{\circ}C$ < 350 $^{\circ}C$).

  • PDF

Effect of Batch Melting Temperature and Raw Material on Iron Redox State in Sodium Silicate Glasses

  • Mirhadi, Bahman;Mehdikhani, Behzad
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.117-120
    • /
    • 2011
  • In this study, the redox state of iron in sodium silicate glasses was varied by changing the melting conditions, such as the melting temperature and particle size of iron oxide. The oxidation states of the iron ion were determined by wet chemical analysis and UV-Vis spectroscopy methods. Iron commonly exists as an equilibrium mixture of ferrous ions, $Fe^{2+}$, and ferric ions $Fe^{3+}$. In this study, sodium silicate glasses containing nanoparticles of iron oxide (0.5% mol) were prepared at various temperatures. Increase of temperature led to the transformation of ferric ions to ferrous ions, and the intensity of the ferrous peak in 1050 nm increased. Nanoparticle iron oxide caused fewer ferrous ions to be formed and the $\frac{Fe^{2+}}{Fe^{3+}}$ equilibrium ratio compared to that with micro-oxide iron powder was lower.

Characteristics of Redox Agent with Additive in Steam-Iron Process for the High Purity Hydrogen Production (고순도 수소 생성을 위한 SIP법에서 첨가제에 따른 환원 특성)

  • Jeon, Bup-Ju;Kim, Sun-Myung;Park, Ji-Hun
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.340-348
    • /
    • 2011
  • Effects of various inorganic-metal oxide (Zr, Zn, Si, Al and Ca as promoters and stabilizers) additive on the reduction rate of iron oxide and the composition of forming hydrogen using the steam-iron cycle operation was investigated. The reduction rate of redox agent with additive was determined from weight change by TGA. The changes of weight loss and reduction rate according to redox agent with various additive affected the hydrogen purity and cycle stability of the process. The cyclic micro reactor showed that hydrogen purity exceeding 95% could be obtained by the water splitting with Si/Fe, Zn/Fe, Zr/Fe redox agents. The redox agents with these elements had an affect on redox cycle stability as a good stabilizer for forming hydrogen by the steam-iron process.

High Purity Hydrogen Production by Redox Cycle Operation (산화-환원 싸이클 조업에 의한 고순도 수소생성)

  • Jeon, Bup-Ju;Park, Ji-Hun
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.5
    • /
    • pp.355-363
    • /
    • 2010
  • High purity hydrogen, 97-99 vol.%, with CO at just ppm levels was obtained in a fixed bed of iron oxide employing the steam-iron cycle operation with reduction at 823K and oxidation in a steam-$N_2$ mixture at 773K TGA experiments indicated that temperature of the reduction step as well as its duration are important for preventing carbon build-up in iron and the intrusion of $CO_2$ into the hydrogen product. At a reduction temperature of 823K, oxide reduction by $H_2$ was considerably faster than reduction by CO. If the length of the reduction step exceeds optimal value, low levels of methane gas appeared in the off-gas. Furthermore, with longer durations of the reduction step and CO levels in the reducing gas greater than 10 vol.%, carbidization of the iron and/or carbon deposition in the bed exhibited the increasing pressure drop over the bed, eventually rendering the reactor inoperable. Reduction using a reducing gas containing 10 vol.% CO and a optimal reduction duration gave constant $H_2$ flow rates and off-gas composition over 10 redox reaction cycles.

Removal of iron oxide scale from feed-water in thermal power plant using superconducting magnetic separation

  • Nishijima, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.22-25
    • /
    • 2019
  • The superconducting magnetic separation system has been developing to separate the iron oxide scale from the feed water of the thermal power plant. The accumulation in the boiler lowers the heat exchange rate or in the worst case damages it. For this reason, in order to prevent scale generation, controlling pH and redox potential is employed. However, these methods are not sufficient and then the chemical cleaning is performed regularly. A superconducting magnetic separation system is investigated for removing iron oxide scale in a feed water system. Water supply conditions of the thermal power plant are as follows, flow rate 400 t / h, flow speed 0.2 m / s, pressure 2 MPa, temperature $160-200^{\circ}C$, amount of scale generation 50 - 120 t / 2 years. The main iron oxide scale is magnetite (ferromagnetic substance) and its particle size is several tens ${\mu}m$. As the first step we are considering to introduce the system to the chemical cleaning process of the thermal power plant instead of the thermal power plant itself. The current status of development will be reported.

Regulation of Apoptosis by Nitrosative Stress

  • Kim, Ki-Mo;Kim, Peter K.M.;Kwon, Young-Guen;Bai, Se-Kyung;Nam, Woo-Dong;Kim, Young-Myeong
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.127-133
    • /
    • 2002
  • Nitrosative stress can prevent or induce apoptosis. It occurs via S-nitrosylation by the interaction of nitric oxide (NO) with the biological thiols of proteins. Cellular redox potential and non-heme iron content determine S-nitrosylation. Apoptotic cell death is inhibited by S-nitrosylation of the redox-sensitive thiol in the catalytic site of caspase family proteases, which play an essential role in the apoptotic signal cascade. Nitrosative stress can also promote apoptosis by the activation of mitochondrial apoptotic pathways, such as the release of cytochrome c, an apoptosis-inducing factor, and endonuclease G from mitochondria, as well as the suppression of NF-${\kappa}B$ activity. In this article we reviewed the mechanisms whereby S-nitrosylation and nitrosative stress regulate the apoptotic signal cascade.

Effects of Cu and Ni Additives for Hydrogen Storage and Release of Fe-based Oxide Mediums (Fe-계 산화물 매체의 수소 저장 및 방출을 위한 Cu 및 Ni 첨가제의 효과)

  • Kim, Hong-Soon;Cha, Kwang-Seo;Lee, Dong-Hee;Yoo, Byoung-Kwan;Kang, Kyoung-Soo;Park, Chu-Sik;Kim, Young-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.5
    • /
    • pp.394-402
    • /
    • 2008
  • The Effects of Cu or Ni additives co-added with Ce/Zr mixed oxides to Fe-based oxide mediums were investigated for the purpose of the replacement of Rh, a precious metal additive, in terms of hydrogen storage(reduction by hydrogen) and release(water splitting). From the results of temperature programmed reduction(TPR), initial reduction rate of iron oxide in the mediums was greatly increased with the addition of Cu, similar to that of Rh. For isothermal redox reaction of 10 cycles, the total amounts of hydrogen evolved in water splitting steps for the mediums added with Cu or Ni were highly maintained at ca. 7 mmol/g-material, even though the oxidation rates were slightly lower than that for the medium added with Rh. This result suggests that the replacement of Rh to Cu or Ni is possible as a co-additive for Fe-based oxide mediums.

Effect of Nitrate on Iron Reduction and Phosphorus Release in Flooded Paddy Soil (논토양에서 질산 이온이 철의 환원과 인의 용출에 미치는 영향)

  • Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.165-170
    • /
    • 2009
  • The increase in P availability to rice under flooded soil conditions involves the reductive dissolution of iron phosphate and iron (hydr)oxide phosphate. However, since $NO_3^-$ is a more favourable electron acceptor in anaerobic soils than Fe, high$NO_3^-$ loads function as a redox buffer limiting the reduction of Fe. The effect of adding $NO_3^-$ on Fe reduction and P release in paddy soil was investigated. Pot experiment was conducted where $NO_3^-$ was added to flooded soil and changes of redox potential and $Fe_2^+$, $NO_3^-$ and $PO_4^{3-}$ concentrations in soil solution at 10 cm depth were monitored as a function of time. Redox potential decreased with time to -96 mV, but it was temporarily poised at about 330${\sim}$360 mV when $NO_3^-$ was present. Nitrate addition to soil led to reduced release of $Fe_2^+$ and prevented the solubilization of P. Phosphate in pore water began to rise soon after incubation and reached final concentrations about 0.82 mg P/L in the soil without $NO_3^-$ addition. But, in the soil with $NO_3^-$ addition, $PO_4^{3-}$ in pore water was maintained in the range of 0.2${\sim}$0.3 mg P/L. The duration of inhibition in $Fe_2^+$ release was closely related to the presence of $NO_3^-$, and the timing of $PO_4^{3-}$ release was inversely related to the $NO_3^-$ concentration in soil solution. The results suggest that preferential use of $NO_3^-$ as an electron acceptor in anaerobic soil condition can strongly limit Fe reduction and P solubilization.

Self Charging Sulfanilic Acid Azocromotrop/Reduced Graphene Oxide Decorated Nickel Oxide/Iron Oxide Solar Supercapacitor for Energy Storage Application

  • Saha, Sanjit;Jana, Milan;Samanta, Pranab;Murmu, Naresh Chandra;Lee, Joong Hee;Kuila, Tapas
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.179-185
    • /
    • 2016
  • A self-charging supercapacitor is constructed through simple integration of the energy storage and photo exited materials at the photo electrode. The large band gap of $NiO/Fe_3O_4$ heterostructure generates photo electron at the photo electrode and store the charges through redox mechanism at the counter electrode. Sulfanilic acid azocromotrop/reduced graphene oxide layer at the photo electrode trapped the photo generated hole and store the charge by forming double layer. The solar supercapacitor device is charged within 400 s up to 0.5 V and exhibited a high specific capacitance of ~908 F/g against 1.5 A/g load. The solar illuminated supercapacitor shows a high energy and power density of 33.4 Wh/kg and 385 W/kg along with a very low relaxation time of ~15 ms ensuring the utility of the self charging device in the various field of energy storage and optoelectronic application.