• Title/Summary/Keyword: Redox mediator

Search Result 43, Processing Time 0.026 seconds

Two Manganese Peroxidases and a Laccase of Trametes polyzona KU-RNW027 with Novel Properties for Dye and Pharmaceutical Product Degradation in Redox Mediator-Free System

  • Lueangjaroenkit, Piyangkun;Teerapatsakul, Churapa;Sakka, Kazuo;Sakka, Makiko;Kimura, Tetsuya;Kunitake, Emi;Chitradon, Lerluck
    • Mycobiology
    • /
    • v.47 no.2
    • /
    • pp.217-229
    • /
    • 2019
  • Two manganese peroxidases (MnPs), MnP1 and MnP2, and a laccase, Lac1, were purified from Trametes polyzona KU-RNW027. Both MnPs showed high stability in organic solvents which triggered their activities. Metal ions activated both MnPs at certain concentrations. The two MnPs and Lac1, played important roles in dye degradation and pharmaceutical products deactivation in a redox mediator-free system. They completely degraded Remazol brilliant blue (25 mg/L) in 10-30 min and showed high degradation activities to Remazol navy blue and Remazol brilliant yellow, while Lac1 could remove 75% of Remazol red. These three purified enzymes effectively deactivated tetracycline, doxycycline, amoxicillin, and ciprofloxacin. Optimal reaction conditions were $50^{\circ}C$ and pH 4.5. The two MnPs were activated by organic solvents and metal ions, indicating the efficacy of using T. polyzona KU-RNW027 for bioremediation of aromatic compounds in environments polluted with organic solvents and metal ions with no need for redox mediator supplements.

The photocatalytic water splitting into $H_2$ and $O_2$ mimicking a Z-scheme mechanism (광합성을 모사한 광촉매 물분해 수소 제조)

  • Jeon, Myung-Seok;Hong, Joon-Gi;Chun, Young-Gab;Choi, Ho-Suk
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.29-35
    • /
    • 2003
  • We studied the water splitting into $H_2$ and $O_2$ using two different semiconductor photo catalysts and redox mediator, mimicking the Z-scheme mechanism of the photosynthesis, $H_2$ evolution took place on a Pt-$SrTiO_2$ (Cr-Ta doped) photocatalyst using $I^-$ electron donor under the visible light irradiation. The Pt-$WO_3$ photocatalyst showed an excellent activity of the $O_2$ evolution using $IO_3^-$ electron acceptor under visible light. $H_2$ and $O_2$ gases evolved in the stoichiometric ratio($H_2/O_2$=2) under visible light using a mixture of the Pt-$WO_3$ and Pt-$SrTiO_3$ (Cr-Ta doped) suspended in NaI aqueous solution. We proposed a two-step photo-excitation mechanism using redox mediator under the visible irradiation.

Electrochemical Behaviors of ABTS2- on the Thiol-modified Gold Electrodes

  • Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.3
    • /
    • pp.113-117
    • /
    • 2006
  • The electrochemical properties of the redox mediator, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) ($ABTS^{2-}$) were studied using cyclic voltammetry. The measured potentials (${E^o}'$ vs SCE) of the two redox couples of ABTS are 0.45 V for $ABTS^{2-}/ABTS^{\cdot-}$ and 0.87 V for $ABTS^{\cdot-}/ABTS^0$. The rate constant for heterogeneous electron transfer and the diffusion coefficients for $ABTS^{2-}$ are $5x10^{-3}cm\;s^{-1}$ and $3.1x10^{-6}cm^2\;s^{-1}$, respectively. Our interest in $ABTS^{2-}$ stems from the fact that this molecule functions as a substrate to the copper oxidase, laccase, by providing the reducing equivalents necessary for the biocatalyzed reduction of dioxygen to water. Consequently, when laccase is tethered to an electrode surface or dissolved in solution, $ABTS^{2-}$ can be used to quantify enzyme activity electrochemically.

Synthesis of a New Cathode Redox Polymer for High Performance in Biofuel Cells

  • Choi, Young-Bong;Lee, Jung-Min;Kim, Hyug-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2803-2808
    • /
    • 2014
  • High potential and fast electron transfer of a cathode mediator are significant factors for improving the performance of biofuel cells. This paper reports the first synthesis of a cathode redox polymer that is a coordination complex of poly (acrylic acid-vinylpyridine-acryl amide) (PAA-PVP-PAA) and [Os(4,4'-dicarboxylic acid-2,2'-bipyridine)$_2Cl_2]^{/+}$ ($E^{\circ}=0.48V$ versus Ag/AgCl). Bilirubin oxidase can be easily incorporated into this polymer matrix, which carried out the four-electron oxygen under typical physiological conditions (pH 7.2, 0.14 M NaCl, and $37^{\circ}C$). This new polymer showed an approximately 0.1 V higher redox potential than existing cathode mediators such as PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$. In addition, we suggest increasing the polymer solubility with two hydrophilic groups present in the polymer skeleton to further improve fast electron transfer within the active sites of the enzyme. The maximum power density achieved was 60% higher than that of PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$. Furthermore, high current density and electrode stability were confirmed for this osmium polymer, which makes it a promising candidate for high-efficiency biofuel cells.

Dynamic Behaviors of Redox Mediators within the Hydrophobic Layers as an Important Factor for Effective Microbial Fuel Cell Operation

  • Choi, Young-Jin;Kim, Nam-Joon;Kim, Sung-Hyun;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.437-440
    • /
    • 2003
  • In a mediator-aided microbial fuel cell, the choice of a proper mediator is one of the most important factors for the development of a better fuel cell system as it transfers electrons from bacteria to the electrode. The electrochemical behaviors within the lipid layer of two representative mediators, thionin and safranine O both of which exhibit reversible electron transfer reactions, were compared with the fuel cell efficiency. Thionin was found to be much more effective than safranine O though it has lower negative formal potential. Cyclic voltammetric and fluorescence spectroscopic analyses indicated that both mediators easily penetrated the lipid layer to pick up the electrons produced inside bacteria. While thionin could pass through the lipid layer, the gradual accumulation of safranine O was observed within the layer. This restricted dynamic behavior of safranine O led to the poor fuel cell operation despite its good negative formal potential.

Surface Charge Transfer of Self-Assembled Viologen Derivative Using Quartz Crystal Microbalance (수정진동자를 이용한 자기조립된 Viologen 유도체의 계면전하이동 특성)

  • Park, Sang-Hyun;Ryu, Kil-Yong;Lee, Dong-Yun;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.256-257
    • /
    • 2005
  • We fabricated self-assembled monolayers(SAMs) onto quartz crystal microbalance(QCM) using viologen, which has been widely used as electron acceptor and electron transfer mediator. The viologen derivative exist in three redox states, namely. These redox reactions are highly reversible and can be cycled many times without significant side reactions, respectively. We studied the characteristics of charge transfer using different electrolyte solutions by electrochemical quartz crystal microbalance (EQCM). From the data, the redox peak currents were nearly equal charges during redox reaction and existed to an excellent linear interrelation between the scan rates and first redox peak currents. The redox reactions of viologen were highly reversible and the EQCM has been employed to monitor the electrochemically induced adsorption of SAMs during the redox reactions.

  • PDF

Humic Substances Act as Electron Acceptor and Redox Mediator for Microbial Dissimilatory Azoreduction by Shewanella decolorationis S12

  • Hong, Yi-Guo;Guo, Jun;Xu, Zhi-Cheng;Xu, Mei-Ying;Sun, Guo-Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.428-437
    • /
    • 2007
  • The potential for humic substances to serve as terminal electron acceptors in microbial respiration and the effects of humic substances on microbial azoreduction were investigated. The dissimilatory azoreducing microorganism Shewanella decolorationis S12 was able to conserve energy to support growth from electron transport to humics coupled to the oxidation of various organic substances or $H_2$. Batch experiments suggested that when the concentration of anthraquinone-2-sulfonate (AQS), a humics analog, was lower than 3 mmol/l, azoreduction of strain S12 was accelerated under anaerobic condition. However, there was obvious inhibition to azoreduction when the concentration of the AQS was higher than 5 mmol/l. Another humics analog, anthraquinone-2-sulfonate (AQDS), could still prominently accelerate azoreduction, even when the concentration was up to 12 mmol/l, but the rate of acceleration gradually decreased with the increasing concentration of the AQDS. Toxic experiments revealed that AQS can inhibit growth of strain S12 if the concentration past a critical one, but AQDS had no effect on the metabolism and growth of strain S12 although the concentration was up to 20 mmol/l. These results demonstrated that a low concentration of humic substances not only could serve as the terminal electron acceptors for conserving energy for growth, but also act as redox mediator shuttling electrons for the anaerobic azoreduction by S. decolorationis S12. However, a high concentration of humic substances could inhibit the bacterial azoreduction, resulting on the one hand from the toxic effect on cell metabolism and growth, and on the other hand from competion with azo dyes for electrons as electron acceptor.

Design and Synthesis of Devices Releasing Insulin in response to Redox Reaction of Glucose (Glucose의 Redox 반응에 의한 인슐린 방출 Device의 설계와 합성)

  • Chung, Dong-June;Ito, Yoshihiro;Imanishi, Yukio;Shim, Jyong-Sup
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.107-115
    • /
    • 1990
  • New insulin-releasing system on the basis of the redox reaction of glucose was synthesized by immobilizing insulin through a disulfide bond(5, 5'-dithiobis(2-nitrobenzoic acid) to polymer membrane(poly(methyl methacrylate)) and enzyme(glucose oxidase). The disulfide bonds were cleaved upon oxidation of glucose with glucose dehydrogenase and glucose oxidase, releasing insulin from the membrane and enzyme. Sensitivity to glucose concentration was enhanced by coimmobilization of enzyme cofactors(nicotinamide adenin dinucleotide and flavin adenin dinucleotide) acting as electron mediator(for the membrane device), and further enhanced by direct immobilization of insulin on glucose oxidase(for the protein device). Both systems were specific to glucose, and the released insulin was indistinguishable from native insulin. The biological activity of released insulin was 81% of native insulin.

  • PDF

The Electrochemical Studies of Two Osmium Redox Polymer Films and Their Application for Multi-Detecting Biosensor (전기화학적인 방법을 이용한 두 개의 오스뮴 고분자 막의 고정화 및 다중 검출 바이오센서에 관한 연구)

  • Tae, Gun-Sik;Kim, Jin-Gu;Choi, Young-Bong;Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.170-175
    • /
    • 2008
  • Screen printed carbon electrodes (SPEs) modified with co-immobilized osmium-based redox polymers can be used to apply multi-detecting biosensors. In this study, we report our initial studies of multi-detecting biosensor concepts using two osmium-based redox polymers for horseradish peroxidase-mediated reduction of ${H_2}{O_2}$ coupled to glucose oxidase-mediated oxidation of glucose. We target to synthesize two osmium redox polymers of potentials use, a chloride-containing redox polymer ($E^{O'}$ + 0.520 vs. Ag/AgCl) and a methoxy-containing redox polymer $E^{O'}$ + 0.150 vs. Ag/AgCl). The former show good catalytic electrical signals with horseradish peroxidase and the latter's redox polymer is to be an effective redox mediator of glucose oxidation by glucose oxidase.