• Title/Summary/Keyword: Red sea bream iridoviral disease

Search Result 5, Processing Time 0.021 seconds

Characterization of rock bream (Oplegnathus fasciatus) fin cells and its susceptibility to different genotypes of megalocytiviruses

  • Jeong, Ye Jin;Kim, Young Chul;Min, Joon Gyu;Jeong, Min A;Kim, Kwang Il
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.149-159
    • /
    • 2021
  • Genus Megalocytivirus cause red sea bream iridoviral disease (RSIVD) and scale drop disease (SDD). Based on the phylogeny of the major capsid protein (MCP) and adenosine triphosphatase (ATPase) genes, megalocytiviruses except for SDD virus (SDDV) could be three different genotypes, red sea bream iridovirus (RSIV), infectious spleen and kidney necrosis (ISKNV), and turbot reddish body iridovirus (TRBIV). In this study, primary cells derived from the caudal fin of rock bream (Oplegnathus fasciatus) grew at 25℃ in Leibovitz's medium supplemented with 10% (v/v) fetal bovine serum and primocin (100 ㎍/mL). Rock bream fin (RBF) cells exhibited susceptibility to infections by different genotypes of megalocytiviruses (RSIV, ISKNV and TRBIV) with the appearance of cytopathic effects with an increase in the viral genome copy number. Furthermore, compared to grunt fin (GF) cells, even though 10 times lower number of RSIV genome copies were inoculated in RBF cells, viral genome copy number produced on RBF cells were 44 times higher than that of GF cells at 7 d post-inoculation. As the isolated RBF cells are sensitive to different genotypes of megalocytiviruses (RSIV, ISKNV and TRBIV), they can be used for future studies regarding in vitro viral infection and subsequent diagnosis.

Experimental transmission of red sea bream iridovirus (RSIV) between rock bream (Oplegnathus fasciatus) and rockfish (Sebastes schlegelii)

  • Min, Joon Gyu;Jeong, Ye Jin;Jeong, Min A;Kim, Jae-Ok;Hwang, Jee Youn;Kwon, Mun-Gyeong;Kim, Kwang Il
    • Journal of fish pathology
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Red sea bream iridovirus (RSIV), belonging to the genus Megalocytivirus, is the predominant cause of mortality in marine fishes in Korea, including rock bream (Oplegnathus fasciatus). Rockfish (Sebastes schlegelii) are the host fish for RSIV, exhibiting no clinical signs or mortality. Cohabitation challenges, which mimicked natural transmission conditions, were performed to evaluate viral transmission between rock bream and rockfish, and to determine the pathogenicity and viral loads. In cohabitation challenge, artificially RSIV-infected rock bream were the viral donor, and healthy rockfish were the recipient. The results showed that although the donor rock bream had 95-100 % cumulative mortality (>108 viral genome copies/mg of spleen 7-14 days after viral infection), the recipient rockfish did not die, even when the viral genome copies in the spleen were >105 copies/mg. These results indicated asymptomatic infections. Notably, in a reverse-cohabitation challenge (artificially RSIV-infected rockfish as the viral donor and healthy rock bream as the recipient), RSIV horizontally infected from subclinical rockfish to rock bream (107 viral genome copies/mg of spleen 21 days after cohabitation) with 10-20% cumulative mortality. These results suggest that an asymptomatic, infected rockfish can naturally transmit the RSIV without being sacrificed.

Detection of Red Sea Bream Iridovirus (RSIV) from marine fish in the Southern Coastal Area and East China Sea (남.서해안과 동중국해 자연산 어류에서 Red Sea Bream Iridovirus (RSIV)의 검출)

  • Lee, Wol-La;Kim, Seok-Ryel;Yun, Hyun-Mi;Kitamura, Shin Ichi;Jung, Sung-Ju;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.20 no.3
    • /
    • pp.211-220
    • /
    • 2007
  • Red sea bream iridovirus disease (RSIVD) cause massive economic losses in marine aquaculture industry in Korea. The causative agent of this disease (RSIV) infects a wide range of fish species. The aims of this study were to monitor RSIV in wild marine fishes and to give critical information for controling the disease through prophylactic methods. Prevalence of the viral disease, geological distribution and reservoir of the virus were investigated using wild marine fishes captured in southern coast and east china sea for two years. (Polymerase Chain Reaction) PCR results showed that RSIV were detected in 39 (24.3%) out of 160 fish. MCP gene sequences of viral strains isolated in this study were closely related to that of a reference strain, red seabream-K, belonging to Megalocytivirus subgroup Ⅲ. The results suggest that some of wild marine fishes are RSIV carriers and may spread the pathogen directly to fish farmed in coastal area.

Genetic relatedness of Megalocytivirus from diseased fishes in Korea (국내 어류에서 분리된 Megalocytivirus의 유전형 분류 및 상관관계 분석)

  • Lee, Eun Sun;Cho, Miyoung;Min, Eun Young;Jung, Sung Hee;Kim, Kwang Il
    • Journal of fish pathology
    • /
    • v.32 no.2
    • /
    • pp.49-57
    • /
    • 2019
  • In this study, we collected 39 megalocytiviruses isolated from diseased fish in Korea from 2012 to 2018. Major capsid protein (MCP) gene, a part of vascular endothelial growth factor (VEGF) gene and histidine triad motif-like protein (HIT) genes of Megalocytivirus were targeted for PCR amplification and analysis of those DNA nucleotide sequences. Korean strains revealed two genotypes (red sea bream iridovirus and turbot reddish body iridovirus types) based on the phylogeny of MCP gene. The red sea bream iridovirus type (RSIV-type) megalocytiviruses were divided into RSIV-subgroup 1 and 2. From the phylogenetic analysis of the VEGF genes, a genotypic variant of RSIV-type Megalocytivirus was identified. The HIT-like protein gene was detected in RSIVs, but not in TBRIV and ISKNV, suggesting that HIT-like protein gene may be specific in RSIV.

Evaluation of a novel TaqMan probe-based real-time polymerase chain reaction (PCR) assay for detection and quantitation of red sea bream iridovirus

  • Kim, Guk Hyun;Kim, Min Jae;Choi, Hee Ju;Koo, Min Ji;Kim, Min Jeong;Min, Joon Gyu;Kim, Kwang Il
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.11
    • /
    • pp.351-359
    • /
    • 2021
  • The red sea bream iridovirus (RSIV) belonging to genus Megalocytivirus is responsible for red sea bream iridoviral disease (RSIVD) in marine and freshwater fishes. Although several diagnostic assays for RSIV have been developed, diagnostic sensitivity (DSe) and specificity (DSp) of real-time polymerase chain reaction (PCR) assays are not yet evaluated. In this study, we developed a TaqMan probe-based real-time PCR method and evaluated its DSe and DSp. To detect RSIV, the probe and primers were designed based on consensus sequences of the major capsid protein (MCP) genes from megalocytiviruses including RSIV, infectious spleen and kidney necrosis virus (ISKNV), and turbot reddish body iridovirus (TRBIV). The probe and primers were shown to be specific for RSIV, ISKNV, and TRBIV-types megalocytiviruses. A 95% limit of detection (LOD95%) was determined to be 5.3 viral genome copies/µL of plasmid DNA containing the MCP gene from RSIV. The DSe and DSp of the developed real-time PCR assay for field samples (n = 112) were compared with those of conventional PCR assays and found to be 100% and 95.2%, respectively. The quantitative results for SYBR Green and TaqMan probe-based real-time PCR were not significantly different. The TaqMan probe-based real-time PCR assay for RSIV may be used as an appropriate diagnostic tool for qualitative and quantitative analysis.