• Title/Summary/Keyword: Red Seabream

Search Result 113, Processing Time 0.023 seconds

Comparison of Growth Performance and Whole-body Amino Acid Composition in Red Seabream (Pagrus major) Fed Free or Dipeptide Form of Phenylalanine

  • Kim, Sung-Sam;Rahimnejad, Samad;Song, Jin-Woo;Lee, Kyeong-Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1138-1144
    • /
    • 2012
  • This study was conducted to evaluate the efficacy of the dipeptide form of phenylalanine as a new source of amino acid in terms of growth performance and whole-body amino acid composition in comparison to the free form for red seabream (Pagrus major). Fish ($1.46{\pm}0.001g$) were fed four isonitrogenous and isocaloric experimental diets containing 0.7 or 1.4% phenylalanine either in free or dipeptide form. A feeding trial was carried out in three replicates and the fish were fed to apparent satiation for six weeks. At the end of the feeding trial, feed intake of fish was influenced by both phenylalanine form and level and significantly higher values were obtained at an inclusion level of 0.7% and by the use of dipeptide form. However, the other growth parameters did not significantly differ among treatments. Whole-body amino acid compositions revealed no significant changes in concentrations of both essential and non-essential amino acids regardless of the increase in phenylalanine levels or the use of its different forms. The finding in this study indicates that juvenile red seabream can utilize dipeptide phenylalanine as efficiently as free form without any undesirable effects on growth performance or whole-body amino acid composition.

Effects of taurine supplementation in low fish meal diets for red seabream (Pagrus major) in low water temperature season

  • Gunathilaka, G.L.B.E.;Kim, Min-Gi;Lee, Chorong;Shin, Jaehyeong;Lee, Bong-Joo;Lee, Kyeong-Jun
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.10
    • /
    • pp.23.1-23.10
    • /
    • 2019
  • Background: Taurine is a conditional essential amino acid for fish. A study was conducted to investigate the compensating effect of supplemental taurine in diets for red seabream (Pagrus major) on impaired growth performance by fish meal (FM) replacement with soybean meal (SM) at low water temperature (14.15 ± 1.95 ℃). Methods: A FM-based diet was considered as a high FM diet and three other experimental diets were formulated to replace FM with SM by 20, 35, or 50% (HFM, SM20, SM35, or SM50, respectively) without taurine and other four diets were formulated by adding 1% taurine to the diets (HFM-T, SM20-T, SM35-T, or SM50-T, respectively). Triplicate groups of fish (108.9 ± 1.58 g/fish) were distributed into 24 polyvinyl circular tanks (215 L) with 20 fish per tank and fed one of the diets to satiation for 20 weeks. Results: Growth performance and feed utilization of red seabream were significantly improved by the dietary taurine supplementation. SM20-T and SM35-T diets increased fish growth that are comparable to HFM diet. Feed intake, feed conversion ratio, and protein efficiency ratio of fish fed SM20-T and SM35-T diets were not significantly different from those of HFM group. Dietary taurine supplementation in each FM replaced group numerically increased innate immunity of the fish. Lysozyme and superoxide dismutase activities were significantly decreased in fish fed SM35, SM50, and SM50-T diets compared to those of fish fed HFM diet while they were not significantly lower in SM20, SM20-T, SM35, and SM35-T groups. Glutathione peroxidase activity was significantly lower in fish group fed SM50 diet while SM50-T group did not significantly lower compared to that of HFM group. The relative expression level of hepatic IGF-1 mRNA was improved in fish fed taurine-supplemented diets compared to their respective SM diets. Conclusions: Growth performance and feed utilization of red seabream can be accelerated or restored by 1% taurine supplementation when they are fed high level of SM up to 35% in diets during low water temperature season.

Effects of Dietary Protein and Lipid Levels on the Growth Performance, Feed Utilization and Innate Immunity of Juvenile Red Seabream Pagrus major (사료 내 단백질과 지방 수준이 참돔(Pagrus major) 치어의 성장, 사료효율 및 비특이적 면역력에 미치는 영향)

  • Kim, Sung-Sam;Oh, Dae-Han;Choi, Se-Min;Kim, Kang-Woong;Kim, Kyoung-Duck;Lee, Bong-Joo;Han, Hyon-Sob;Lee, Kyeong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.3
    • /
    • pp.308-313
    • /
    • 2015
  • A $3{\times}3$ factorial study was conducted to investigate the effects of dietary protein and lipid levels on the growth, feed utilization and innate immunity of red seabream Pagrus major. Nine diets consisting of three protein levels (42%, 46% and 50% crude protein) and three lipid levels (10%, 14% and 18% crude lipid) were formulated. Triplicate groups of red seabream were fed the experimental diets to apparent satiation (5-6 times a day, from 08:00 to 18:00 h at 2-h intervals) for 10 weeks. At the end of the feeding trial, the weight gain and specific growth rate of fish fed P46L14 (46% protein and 14% lipid), P50L10 (50% protein and 10% lipid) and P50L14 (50% protein and 14% lipid) were significantly (P<0.05) higher than those of fish fed P42L18 (42% protein and 18% lipid). The feed conversion ratios (FCR) of the fish were affected by dietary lipid levels (P<0.039), but not dietary protein levels. The FCR tended to increase with increasing dietary lipid levels from 10% to 18% with the 46% and 50% protein levels. The weight gain, protein efficiency ratio, specific growth rate, feed intake and survival of fish were not affected by either dietary protein or lipid levels. Myeloperoxidase activity in the group fed P50L14 (50% protein and 14% lipid) was significantly higher than that in the group fed P42L10 (42% protein and 10% lipid) or P50L18 (50% protein and 18% lipid). However, the myeloperoxidase activity of fish was not affected by either dietary protein or lipid level. The fish fed P46L14 (46% protein and 14% lipid) and P46L18 (46% protein and 18% lipid) showed significantly higher superoxide dismutase activity than did the fish fed P46L10 (46% protein and 10% lipid), P50L10 (50% protein and 10% lipid) of P50L18 (50% protein and 18% lipid). In conclusion, the optimum protein and lipid levels for the growth and feed utilization of juvenile red seabream were 46% and 14%, respectively, and the optimum dietary protein to energy ratio was 27.4 g/MJ.

Effects of fish meal replacement using an animal and plant protein mixture in diets for juvenile red seabream (Pagrus major)

  • Buddhi E. Gunathilaka;Seong-Mok Jeong;Kang-Woong Kim;Sang-Guan You;Sang-Min Lee
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.10
    • /
    • pp.687-698
    • /
    • 2024
  • The experiment was designed to study effects of fish meal (FM) replaced diets containing a mixture of meat meal (MM), chicken byproduct meal (CBM), soy protein concentrate (SPC) and corn gluten (CG) on growth performance, feed utilization, biochemical parameters and muscle composition of juvenile red seabream (Pagrus major). A diet formulated to contain 60% FM was considered as the control (CON). Two other diets were designed by reducing FM levels to 40% and 20% with 5% or 10% of each MM, CBM, SPC, and CG to contain 20% or 40% protein source mixture in each diet (named as MX20 and MX40 respectively). Red seabream in juvenile stage was distributed among nine fiberglass tanks having a capacity of 300 L. Average weight of fish was 4.57 g and each tank was added with 40 fish assigning as one of three replicates of diets. Fish were fed till satiation two times a day at 09:00 and 17:00 h for eight weeks. Growth performance of fish fed CON and MX20 diets were significantly higher than those of fish fed MX40 diet. Feed intake of fish in CON group was significantly higher compared to MX40 group. Feed utilization was not significantly affected due to FM replacement with protein sources. Serum lysozyme and superoxide dismutase activities were not significantly different among dietary treatments. Plasma triglyceride level was significantly higher in fish fed CON diet compared to that of MX40 group. Muscle proximate and amino acid compositions were not significantly affected by the dietary treatments. Muscle palmitic acid level was significantly lower in CON group while dihomo-gamma-linolenic acid was significantly higher compared to MX20 and MX40 groups. Therefore, the mixture of MM, CBM, SPC, and CG can be used to reduce FM from red seabream diets to 40% without negative influences on growth performance compared to a diet containing 60% FM. FM level can be further reduced to 20% with the ingredient mixture without compromising feed utilization, innate immunity and muscle quality.

Comparison of tolerance of red seabream, Pagrus major exposed to hypoxia with body size (저산소에 노출된 참돔(Pagrus major)의 개체 크기에 따른 내성 비교)

  • Ji-Do Han;Heung-Yun Kim
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.379-388
    • /
    • 2023
  • Experiments were performed to investigate hypoxia tolerance with body size of red seabream (Pagrus major) at 24℃. The rate of oxygen consumption was measured at an interval of 10 min using automated intermittent-flow respirometry. The weight-specific standard metabolic rate (SMR, mg O2 kg-1hr-1) and critical oxygen saturation (Scrit, % air saturation) of the fish were measured under normoxic condition and progressive hypoxia with 0.6-786 g of fish weight (W), respectively. SMR typically decreased with increasing body weight based on SMR=351.59·W-0.195 (r2=0.934). Scrit was higher in larger fish than those of smaller fish in the range of 17.3-24.4%. The result of this study suggests that the smaller seabream can withstand in hypoxic waters better than the larger ones.

Behavioral and Physiological Responses of Juvenile Red Seabream Pagrus major exposed to Ethanol Seawater (에탄올에 대한 참돔 Pagrus major의 행동 및 생리학적 반응)

  • Park, Jin-Woo;Chang, Young-Jin;Kim, Ki-Tae;Kwon, Joon-Yeong
    • Journal of fish pathology
    • /
    • v.25 no.1
    • /
    • pp.47-58
    • /
    • 2012
  • Behavioral and physiological responses of juvenile red seabream (Pagrus major) to different concentrations of ethanol were investigated. No swimming and no reaction to touching by a wooden stick was observed at 0.6% ethanol group in behavioral response, and survival rate was 100% after 5 hours of treatment. Red blood cell count, hematocrit and hemoglobin levels in plasma were not significantly different among all groups. AST activities in plasma significantly decreased as ethanol concentration increased. On the contrary, ALT activities in plasma significantly increased as ethanol concentration increased. Cortisol level in plasma was the lowest in 0.6% ethanol group. Glucose levels in plasma increased significantly when ethanol concentration increased more than 0.4%. Oxygen consumption of fish in 0.6% ethanol seawater was constantly lower than that of fish in control seawater from 2 hours after the exposure to ethanol seawater until the end of experiment.

Effects of Dietary Prebiotics and Probiotics on Growth, Immune Response, Anti-oxidant Capacity and Some Intestinal Bacterial Groups of the Red Seabream Pagrus major (사료 내 Prebiotic과 Probiotics의 첨가가 참돔(Pagrus major)의 성장, 면역력, 항산화력, 장내 미생물 조성 변화에 미치는 영향)

  • Jongho Lim;Gunho Eom;Choong Hwan Noh;Kyeong-jun Lee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.1
    • /
    • pp.89-98
    • /
    • 2023
  • We evaluated the effects of prebiotic (mannan oligosaccharides, Mos) and probiotic diet supplements on growth performance, innate immunity, antioxidant activity, and intestinal changes in the microbial flora of red seabream Pagrus major. A basal diet (Con) was formulated to meet the nutrient requirement of red seabream. The dietary starch in Con was replaced with 0.6% Mos, Lactobacillus plantarum, Bacillus subtilis, B. licheniformis and probiotic mixture (labeled as Mos, Pro-LP, Pro-BS, Pro-BL and Pro-Mix, respectively). We stocked 450 fish in 18 polypropylene tanks (400 L) in triplicate groups per dietary treatment. The fish were fed one of the diets twice (08:30, 18:30 h) a day for 63 days. Lysozyme activity was significantly higher in all the supplemented groups than that of the Con group. The immunoglobulin level of Pro-Mix, anti-protease activity of Pro-BL, and glutathione peroxidase and superoxide dismutase activity of Pro-BS, Pro-BL and Pro-Mix groups were significantly higher than those of the Con group. The ratio of total Vibrio/heterotrophic marine bacteria counts was significantly lower in Pro-LP, Pro-BL and Pro-Mix groups than that of the Con group. Therefore, dietary supplementation of Mos and probiotics to improves immune response and antioxidant enzyme activity and inhibits Vibrio bacteria in the intestine.

Comparison of Muscle Color, Taste and Nutrition Components Between Red Seabreams Cultured by Feeding and Starving (급이 및 비급이 참돔의 색, 맛 및 영양성분 비교)

  • Shin, Gil-Man;Ahn, You-Seong;Shin, Dong-Myung;Kim, Hye-Suk;Kim, Hyung-Jun;Yoon, Min-Seok;Heu, Min-Soo;Kim, Jin-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.9
    • /
    • pp.1142-1147
    • /
    • 2008
  • For the effective use of cultured red seabream, the muscle color, taste and nutrition components between red seabreams cultured by feeding and starving were compared. The proximate composition of red seabream muscle cultured by starving (RCS) was 72.7% moisture, 21.1% protein, 3.7% lipid and 1.4% crude ash. In comparison to red seabream muscle cultured by feeding (RCF), moisture and crude lipid of RCS were each 3% higher and 3% lower. No difference was, however, found in the other proximate compositions. The Hunter color value of RCS was 37.52 for L value, -1.47 for a value, 0.71 for b value and 59.33 for ${\Delta}E$ value, which was slightly higher in the L value than that of red seabream muscle cultured feeding (RCF); however, no differences were found in the other Hunter color values. TCA soluble-N content of RCS was 403.8 mg/100 g, which was higher than that of RCF (314.7 mg/100 g). In taste values, the major free amino acids of both RCS and RCF were glutamic acid, alanine, lysine and histidine. Total amino acid content of RCS was 21.2 g/100 g, which was higher than that of RCF. The mineral content of RCS was slightly higher in potassium than that of RCF, while lower in magnesium. According to the result of sensory evaluation, RCS was superior in taste and texture to RCF, while similar in color and flavor.