DOI QR코드

DOI QR Code

Behavioral and Physiological Responses of Juvenile Red Seabream Pagrus major exposed to Ethanol Seawater

에탄올에 대한 참돔 Pagrus major의 행동 및 생리학적 반응

  • Park, Jin-Woo (Department of Aquatic Life Medical Science, Sunmoon University) ;
  • Chang, Young-Jin (Department of Marine Bio-materials and Aquaculture, Pukyong National University) ;
  • Kim, Ki-Tae (Department of Marine Bio-materials and Aquaculture, Pukyong National University) ;
  • Kwon, Joon-Yeong (Department of Aquatic Life Medical Science, Sunmoon University)
  • 박진우 (선문대학교 수산생명의학과) ;
  • 장영진 (부경대학교 해양바이오신소재학과) ;
  • 김기태 (부경대학교 해양바이오신소재학과) ;
  • 권준영 (선문대학교 수산생명의학과)
  • Received : 2011.10.26
  • Accepted : 2012.02.27
  • Published : 2012.04.30

Abstract

Behavioral and physiological responses of juvenile red seabream (Pagrus major) to different concentrations of ethanol were investigated. No swimming and no reaction to touching by a wooden stick was observed at 0.6% ethanol group in behavioral response, and survival rate was 100% after 5 hours of treatment. Red blood cell count, hematocrit and hemoglobin levels in plasma were not significantly different among all groups. AST activities in plasma significantly decreased as ethanol concentration increased. On the contrary, ALT activities in plasma significantly increased as ethanol concentration increased. Cortisol level in plasma was the lowest in 0.6% ethanol group. Glucose levels in plasma increased significantly when ethanol concentration increased more than 0.4%. Oxygen consumption of fish in 0.6% ethanol seawater was constantly lower than that of fish in control seawater from 2 hours after the exposure to ethanol seawater until the end of experiment.

에탄올 0.6% 해수에 5시간 동안 침지한 참돔 치어는 유영행동을 멈추었으며 외부의 물리적 자극에도 반응하지 않는 상태에 도달하였다. 이 농도구에서 생존율은 100%였으며 RBC, hematocrit, Hb 수치는 다른 그룹과 유의한 차이를 보이지 않았다. 혈장 코티졸 농도 또한 0.6% 에탄올 농도에서 가장 낮은 값을 나타냈다. 그러나 0.8% 이상의 에탄올 해수에 침지한 실험어는 심한 스트레스 반응과 높은 폐사율을 보였다. 참돔 치어를 0.6%의 에탄올 해수에 침지시키고 매시간 산소소비량을 측정한 결과, 에탄올해수에 침지된 실험어는 실험개시 2시간 후부터 종료 시까지 지속적으로 일반해수에 침지된 실험어보다 적은 산소를 소비하였다. 이상의 결과들은 에탄올에 의해 유도된 취기효과가 마취제의 마취효과와 비슷하였으며, 5시간 침지 시 혈액성상, 행동반응, 생존율, 산소소비율 등을 종합하여 볼 때, 0.6% 이하의 에탄올 농도가 참돔치어에게 안전한 농도이며, 0.8% 이상에서는 독성으로 작용할 수 있음을 보여준다.

Keywords

References

  1. Barton, B.A. and Iwama G.K.: Physiological changes in fish from stress in aquaculture with emphasis in the response and effects of corticosteroids. Annu. Rev. Fish. Dis., 1: 3-26, 1991. https://doi.org/10.1016/0959-8030(91)90019-G
  2. Barton, B.A., Peter, R.E. and Paulence, C.R.: Plasma cortisol levels of fingerling rainbow trout (Salmo gairdneri) at rest, and subjected to handling, confinement, transport and stocking. Can. J. Fish. Aquacult. Sci., 37: 805-811, 1980. https://doi.org/10.1139/f80-108
  3. Berg, A., Hansen, T. and Stefansson. S.: First feeding of Atlantic salmon (Salmo salar L.) under different photoperiods. J. App. Ichthyol., 8: 251-256, 1992. https://doi.org/10.1111/j.1439-0426.1992.tb00691.x
  4. Bourne, P.K.: The use of MS-222 (tricaine methanesulphonate) as an anaesthetic for routine blood sampling in three species of marine teleosts. Aquaculture, 36: 313-321, 1984. https://doi.org/10.1016/0044-8486(84)90324-7
  5. Bucher, T., Redetzki, H.: Specific photometric determination of ethyl alcohol based on an enzymatic reaction. Klin Wschr., 29: 615, 1951. https://doi.org/10.1007/BF01485653
  6. Burka, J.F., Hammell, K.L., Horsberg, T.E., Johnson, G.R., Rainnie, D.J. and Speare, D.J.: Drugs in salmonid aquaculture a review. J. Vet. Pharmacol. Ther., 20: 333-349, 1997. https://doi.org/10.1046/j.1365-2885.1997.00094.x
  7. Carmichael, G.J., Tomasso, J.R., Simco, B.A. and Davis, K.B.: Characterization and alleviation of stress associated with hauling largemouth bass. Trans. Am. Fish. Soc., 113: 778-785, 1984. https://doi.org/10.1577/1548-8659(1984)113<778:CAAOSA>2.0.CO;2
  8. Casillas, E. and Ames, W.: Serum chemistry of diseased English sole, Parophrys vetulus Girard, from polluted areas of Puget Sound, Washington. J. Fish. Dis., 8: 437-449, 1985. https://doi.org/10.1111/j.1365-2761.1985.tb01277.x
  9. Chang, Y.J. and Hur, J.W.: Physiological responses of grey mullet (Mugil cephalus) and Nile tilapia (Oreochromis niloticus) by rapid changes in salinity of rearing water. J. Korean Fish. Soc., 32: 310-316, 1999.
  10. Clarke, W.C., Shelbourne, J.R. and Brett, J.R.: Effects of artificial photoperiod cycles, temperature and salinity on growth and smolting in underyearling coho (Oncorhynchus kisutch), chinook (O. tshawytscha), and sockeye (O. nerka) salmon. Aquaculture, 22: 105-116, 1981. https://doi.org/10.1016/0044-8486(81)90137-X
  11. Davis, K.B., Suttle, M.A. and Parker, N.C.: Biotic and abiotic influences on corticosteroid hormone rhythms in channel catfish. Trans. Am. Fish. Soc., 113: 414-421, 1984. https://doi.org/10.1577/1548-8659(1984)113<414:BAAIOC>2.0.CO;2
  12. Davis, K.B. and Parker, N.C.: Plasma corticosteroid stress response of fourteen species of warm water fish to transportation. Trans. Am. Fish. Soc., 115: 495-499. 1986. https://doi.org/10.1577/1548-8659(1986)115<495:PCSROF>2.0.CO;2
  13. Donaldson, E.M.: The pituitary-interrenal axis as an indicator of stress in fish. pp.11, Academic Press, London, 1981.
  14. Gerlai, R., Lahav, M., Guo, S. and Rosenthal, A.: Drinks like a fish: zebrafish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol. Biochem. Behav., 67: 773-782, 2000. https://doi.org/10.1016/S0091-3057(00)00422-6
  15. Gerlai, R.G., Lee, V., Blaser, R.: Effects of acute and chronic ethanol exposure on the behavior of adult zebra fish (Danio rerio). Pharmacol. Biochem. Behav., 85: 752-761, 2006. https://doi.org/10.1016/j.pbb.2006.11.010
  16. Lutz, P.L. and Nilsson, G.E.: Contrasting strategies for anoxic brain survival-glycolysis up or down. J. Exp. Biol., 200: 411-419, 1997
  17. MacPhail, R.C., Brooks, J., Hunter, D.L., Padnos, B., Irons, T.D. and Padilla, S.: Locomotion in larval zebrafish: Influence of time of day, lighting and ethanol. Neurotoxicology, 30: 52-58, 2009. https://doi.org/10.1016/j.neuro.2008.09.011
  18. Mathur, P. and Guo, S.: Differences of acute versus chronic ethanol exposure on anxiety-like behavioral responses in zebrafish. Behav. Brain Res., 219: 234-239, 2011. https://doi.org/10.1016/j.bbr.2011.01.019
  19. McDonald, D.G. and Milligan, C.L.: Ionic, osmotic and acid base regulation in stress. In Fish stress and Health in Aquaculture (eds. Iwama, G.W., Pickering, A.D., Sumpter, J.P., Schreck, C.B.), pp. 119-144. Cambridge: University Press, 1997.
  20. Morales, A.E., Cardenete, G., Abellan, E. and Garcia-Rejon, L.: Stress-related physiological responses to handling in common dentex (Dentex dentex Linnaeus, 1758). Aquacult. Res., 36: 33-40, 2005. https://doi.org/10.1111/j.1365-2109.2004.01180.x
  21. Mourik, J., Raeven, P., Steur, K., Addink, A.D.F.: Anaerobic metabolism of red skeletal muscle of goldfish, Crassius auratus (L.). FEBS Letters, 137: 111-114, 1982. https://doi.org/10.1016/0014-5793(82)80326-8
  22. Perry, S,F. and Reid, S,D.: ${\beta}$-adrenergic signal transduction in fish: interactive effects of catecholamines and cortisol. Fish. Physiol. Biochem., 11: 195-203, 1993. https://doi.org/10.1007/BF00004567
  23. Robertson, L., Thomas, P., Arnold, C.R. and Trant, J.M.: Plasma cortisol and secondary stress responses of red drum to handling, transport, rearing density, and disease outbreak. Prog. Fish-Cult., 49: 1-12, 1987. https://doi.org/10.1577/1548-8640(1987)49<1:PCASSR>2.0.CO;2
  24. Ross, L.G. and Ross, B.: Anaesthetic and Sedative Techniques for Aquatic Animals. pp. 159., Blackwell Science, Oxford, 1999.
  25. Sakamoto, S. and Yone, Y.: Requirement of red sea bream for dietary iron. Bull. Jap. Soc. Sci. Fish., 44: 223-225, 1978. https://doi.org/10.2331/suisan.44.223
  26. Shich, M.S.: Changes of blood enzymes in brook trout induced by infection with Aeromonas salmonicida. J. Fish. Biol., 11: 13-18, 1978.
  27. Schreck, C.B.: Stress and rearing of salmonids. Aquaculture, 28: 241-249., 1982. https://doi.org/10.1016/0044-8486(82)90026-6
  28. Specker, J.L. and Schreck, C.B.: Strees response to transportation and fitness for marine survival in coho salmon (Oncorhynchus kisutch) smolts. Can. J. Fish. Aquacult. Sci., 37: 765-769, 1980. https://doi.org/10.1139/f80-102
  29. Strange, R.J., Schreck, C.B. and Golden, J.T.: Corticoid stress responses to handling and temperature in salmonids. Trans. Ame. Fish. Soc., 106: 213-217, 1977. https://doi.org/10.1577/1548-8659(1977)106<213:CSRTHA>2.0.CO;2
  30. Summerfelt, R.C. and Smith, L.S.: Anesthesia, surgery, and related techniques. In : Methods for Fish Biology (CB Schreck and PB Moyle). Ame. Fish. Soc. Bethesda. Maryland, 213-272, 1990.
  31. Tomasso, J.R., Davis, K.B., Parker, N.C.: Plasma corticosteroid and electrolyte dynamics of hybrid striped bass (white bass ${\times}$ striped bass) during netting and hauling stress. Proc. World Maricult. Soc., 11: 303-310, 1980.
  32. Weber, R.A., Peleteiro, J.B., Garcia, Martin, L.O. and Aldegunde, M.: The efficacy of 2-phenoxyethanol, metomidate, clove oil and MS-222 as anaesthetic agents in the Senegalese sole (Solea senegalensis Kaup 1858). Aquaculture., 288: 147-150, 2009. https://doi.org/10.1016/j.aquaculture.2008.11.024
  33. Wedemeyer, G.A. and Yasutake, W.T.: Clinical methods for the assessment of the effcts of environmental stress on fish health, pp.89, Fish and Wildlife, Service, Technical, U.S, 1977.
  34. Wendelaar Bonga, S,E.: The stress response in fish. Physiol. Rev., 77: 591-625, 1997.
  35. Zeng, T., Zhang, C.L., Zhu, Z.P., Yu, L.H., Zhao, X.L. and Xie, K.Q.: Diallyl trisulfide (DATS) effectively attenuated oxidative stress-mediated liver injury and hepatic mitochondrial dysfunction in acute ethanol-exposed mice. Toxicology, 252: 86-91, 2008. https://doi.org/10.1016/j.tox.2008.07.062