• Title/Summary/Keyword: Red Arrow Signal

Search Result 7, Processing Time 0.021 seconds

Study on Headways at Signalized Intersections Before and After Installation of Red Arrow Signal (3색 화살표 신호등 설치 전.후 차두시간 비교 분석)

  • Lee, Ho-Won;Ju, Du-Hwan;Hyeon, Cheol-Seung;Park, Bu-Hui;Kim, Dong-Hyo
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.57-65
    • /
    • 2011
  • After heated discussion, National Police Agency decided not to install Red Arrow signal at such major intersections as Gwanghwamoon, Sejongro. The major issues can be summarized in the following reasons. The one is the conflict of color and symbol (red means STOP and arrow means PROGRESS), and it would confuse drivers and may cause traffic accident. The other includes high replacement cost. This paper delivered how much red arrow signal would affect (1) drivers start up delay time, (2) saturation flow rate and (3) vehicle headway. The result showed that there was no statistical difference in those even when a red arrow signal is placed.

A Study of the Intersection in Reduce Car Accidents for Traffic Signal Light to Supplement (교차로 사고 감소를 위한 신호등 보완에 관한 연구)

  • Park, In-Deok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.296-301
    • /
    • 2020
  • Three types of traffic signal systems are two-color signal systems that flash red and green and are mainly used on crosswalks, next, three-color equalization systems mainly used at T-shaped intersections with red and yellow lights and a green arrow, and third, four-color intersections that generally have red, yellow and green colored lights and a green arrow. In what is known as the "dilemma zone" area, a driver collects information that influences his/her decision whether to stop, speed, tail, interrupt, or violate a traffic light, depending on the intersection width, vehicle speed, cognitive response time and reference yellow signal time. This study examined the impact of changes in the length of the dilemma zone areas based on changes in yellow signal times, the speed of the intersection passages, and signal lamps. Downward adjustments of 50km/h and 60km/h affected yellow signal time. The yellow signal time increased by 0.1 to 2.3[s] due to this effect and the dilemma zone area increased by 1.22 to 26[m]. The driver of the dilemma zone could quickly decide to reduce the time remaining of the straight (3color, 4color) green signal to reduce the potential of a traffic accident at the intersection traffic. Safe entry of red (LED palm) and left-turn signals for entering flashed at the intersection and operated at midnight.

Red Light Running Enforcement System Using Real Time Individual Vehicle Tracking

  • Lim, Dae-Woon;Jun, Joon-Suk;Park, Sung-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.115.5-115
    • /
    • 2002
  • In this paper, we introduce a system that detects all kinds of violations at a street intersection such as red light running, speed violation, stop line violation and lane violation by tracking individual vehicles. Two cameras are used for defecting violations. One is an analog camera for real-time tracking and the other is a digital camera for license plate reading. This system is connected to the traffic signal system controller and monitors the red, arrow, yellow and green phases of an approach. Two loops in the road are used to detect vehicle approach and speed. The system takes pictures of all vehicles passing a second loop and tracks the vehicles until they go out a street intersection...

  • PDF

Right-Turn Vehicle Supplementary Signal Improvement at Intersections (교차로 우회전 차량 보조등 개선)

  • LEE, Nam Soo;KIM, Yu Chan;LIM, Joon Beom;KIM, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.441-448
    • /
    • 2015
  • This study aims to suggest a reasonable signal operation method for right-turn traffic management. It was found that the right-turn vehicle supplementary signal is currently operated without clear regulations or criteria. It was also analyzed that right-turn supplementary signals are used without consistency, there is a risk of traffic accidents due to the discordance between supplementary signals and traffic signals of forward vehicles, there is a lack of basis for prohibition of a right turn when right-turn vehicle's supplementary signal is red and the flashing red signal is used in a different sense from the law. In order to see the effect of the installed right-turn vehicle supplementary signals on traffic signal violation, a field investigation was conducted. As the result, there was a high proportion of signal violation on the approach lane with right-turn supplementary signals and this means that right-turn supplementary signals hardly influenced the reduction in proportion of signal violation during a right turn. Additionally, a survey was carried out to see if there were differences in driver's interpretation of traffic signals depending on the installation of right-turn supplementary signals. As the result of the survey, there were no differences in interpretation of traffic signals depending on the installation of right-turn supplementary signals or the types of right-turn supplementary signals. A right turn when the signal was red did not lead to serious traffic accidents, so it is thought that there should be a careful consideration of a total ban on a right turn when the signal is red, in order to prevent driver's confusion due to the change of the signal system. Unless there is a disturbance to cars and pedestrians after a temporary stop when the signal is red, there is a need to specify that vehicles must stop temporarily in the Road Traffic Act to facilitate a right turn. What this study finally suggested is to use tri-colored arrow signals for right-turn car supplementary signals to convey a signal to a driver clearly.

Development of a Traffic Signal Controller for the Tri-light Traffic Signal (3구신호등 제어용 교통신호제어기 개발)

  • Han, Won-Sub;Gho, Gwang-Yong;Heo, Nak-Won;Lee, Chul-Kee;Ha, Dong-Ik;Lee, Byung-Cheol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.49-58
    • /
    • 2010
  • The traffic signal controllers being used in the domestic currently are being manufactured based on the korean national police standard which was developed for controlling the quad-light traffic signal having the red, yellow, left-turn arrow, and green lights. But according to the national policy for the traffic operation, they have to be changed to be able to switch the tri-light signal having red, yellow and green lights. In this study, a new tri-light traffic signal controller was designed and developed by the way improving the Signal Control Unit of the existing quad-light standard traffic controller. The Load Signal Unit(LSU) was improved to output 6 signals which are the two assemblies of three signal indications having the red, yellow, and green lights. To enough traffic signals output to control each directional movements and the various transport modes which are car, bus, bike, and pedestrian etc., the connector bus system was designed to be able to accommodate maximum 96 signals outputs being constructed by 16 LSUs. Flasher device was developed to be able to support maximum 32 red signals. In the software, the communication protocol between traffic control center and the traffic signal controller was improved and new signal map code values were defined for the developed LSU controlling the quad-light traffic signal. A model of the quad-light traffic signal controller developed and was tested three operations, protocol-operation, remote-command and control-mode. The test result operated all of them successfully.

A Study on the Signal Control Unit's Reconstitution to Control the Separated Through/Left(or Right) Turn and the Median Bus Lane Signal for the Standard Traffic Signal Controller (표준규격 교통신호제어기에서 교통류별 전용신호 구현방안 연구)

  • Han, Won-Sub;Lee, Ho-Won;Hyun, Cheol-Seung;Joo, Doo-Hwan;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.5
    • /
    • pp.57-70
    • /
    • 2009
  • According to the change of the traffic conditions, the requirement of controlling the separated left(or right) turn, the median bus lane and bicycle signal is increasing. However, the traffic signal controller standard based on the four-set lights restricts to control the three-set lights which control the separated direction and kind of traffics. This study suggests the method to control the three-set lights signal by improving the hardware and software for the traffic signal controller which is operated currently in the traffic scene. The 6 output ports of Load Signal Unit(LSU) which is consisted of Pedestrian Red, Pedestrian Green, Red, Yellow, Arrow and Green signal reconstitute 2 rows of the Red, Yellow, Green for three-set lights while the Signal Map data's code values which control the signal step of an individual Ring and LSU are established to adjust the LSU's output ports(R1 Y1 G1 R2 Y2 G2) of the three-set lights. The effect of using the separated through/left turn and the median lane bus signal of three-set lights is analyzed from a Mangwoo intersection in Seoul. The results of analysis show that the delay time of the east-west direction where the median bus lane is operated is especially improved with over 70 sec/veh.

  • PDF

Right-Turn Traffic Operation at Signalized Intersections (신호교차로에서 우회전교통류 운영방안)

  • KIM, Youngchan;KWON, Minyoung
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.1
    • /
    • pp.79-89
    • /
    • 2017
  • The purpose of this study is to analyze the current right-turn operation at signalized intersections and suggest appropriate right-turn operation strategy. From field investigation, right-turn signals have not only operated various type and shape, lacking of consistency, but also there was no clear regulations or standards. It could increase drivers' confusion and cause vehicle-to-pedestrian accidents. In order to improve pedestrian safety, there is urgent need to study the regulations and standards regarding to right-turn traffic control. This study suggests appropriate right-turn signal operation strategy. In case of permissive right-turn operation, it should be stated on regulations that red light means right-turn vehicles must stop temporarily at the stop line and then turn right. Necessary conditions for installing right-turn signal for protected operation are that there should have one or more exclusive right-turn lanes and right-turn signal face should contain the lenses with three-color arrow indication. In addition, we assort right-turn operation types as permissive, protected and protected/permissive right-turn and suggest specific signal operation strategy by the types.