• Title/Summary/Keyword: Recycling system

Search Result 1,195, Processing Time 0.03 seconds

Growth Responses of Potted Gerbera 'Sunny Lemon' under Non-Nutrient Solution Recycling System by Media and Nutrient Contents (비순환식 분화 양액재배시 배지와 양액함량에 따른 거베라 'Sunny Lemon'의 생육반응)

  • Kil, Mi-Jung;Shim, Myung-Sun;Park, Sang-Kun;Shin, Hak-Gi;Jung, Jae-A;Kwon, Young-Soon
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.73-80
    • /
    • 2011
  • To investigate the characteristics of plant growth and flower quality of gerbera 'Sunny Lemon' by amount of nutrient solution, young seedling plants, 'Sunny Lemon' were transplanted to rock-wool and medium of peat moss and perlite mixed with 1 to 2 and they were acclimatized in greenhouse during about 1 month. Nutrient solution supplied to the plants is sonneveld solution of 1/2 concentration and treatments launched June 24, 2010 when average plant height was $20{\pm}1cm$. Nutrient contents as a standard for starting point of irrigation by time domain reflectometry (TDR) were determined with 60-65%, 70-75%, and 80-85%. Results of growth during vegetative growth, plant height, leaf width and leaf number increased by 10% in rockwool, but they were not significantly different. As for plant growth depending on nutrient content, 80-85% treatment showed the highest values. Leaf number increased by 60%, and leaf width and plant height had a about 40% increase than initial growth. Effectiveness for flower quality, yield and days to flowering were superior when nutrient content of media was higher than in the others. Especially, average days to flowering in 80-85% content was advanced by 7-10 days compared to the day in 60-65% treatment. The total amount of nutrient supply per plant was higher in mixed medium than in rockwool, but change patterns of EC and pH were enhanced in rockwool. Based on our results, we recommended that growth, cut flower, and yield of gerbera 'Sunny Lemon' were more effective when nutrient content of mixed medium was maintained at 80-85%.

Changes in Inorganic Element Concentrations in Leaves, Supplied and Drained Nutrient Solution according to Fruiting Node during Semi-forcing Hydroponic Cultivation of 'Bonus' Tomato ('Bonus' 토마토 반촉성 수경재배 시 착과절위에 따른 식물체, 공급액 및 배액의 무기성분 농도 변화)

  • Lee, Eun Mo;Park, Sang Kyu;Lee, Bong Chun;Lee, Hee Chul;Kim, Hak Hun;Yun, Yeo Uk;Park, Soo Bok;Chung, Sun Ok;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.38-45
    • /
    • 2019
  • Recycling of drained nutrient solution in hydroponic cultivation of horticultural crops is important in the conservation of the water resources, reduction of production costs and prevention of environmental contamination. Objective of this research was to obtain the fundamental data for the development of a recirculation system of hydroponic solution in semi-forcing cultivation of 'Bonus' tomato. To achieve the objective, tomato plants were cultivated for 110 days and the contents of inorganic elements in plant, supplied and drained nutrient solution were analyzed when crop growth were in the flowering stage of 2nd to 8th fruiting nodes. The T-N content of the plants based on above-ground tissue were 4.1% at the flowering stage of 2nd fruiting nodes (just after transplanting), and gradually get lowered to 3.9% at the flowering stage of 8th fruiting nodes. The tissue P contents were also high in very early stage of growth and development and were maintained to similar contents in the flowering stage of 3rd to 7th fruiting nodes, but were lowed in 8th node stages. The tissue Ca, Mg and Na contents in early growth stages were lower than late growth stages and the contents showed tendencies to rise as plants grew. The concentration differences of supplied nutrient solution and drained solution in $NO_3-N$, P, K, Ca, and Mg were not significant until 5 weeks after transplanting, but the concentration of those elements in drained solution rose gradually and maintained higher than those in supplied solution. The concentrations of B, Fe, and Na in drained solution were slightly higher in the early stages of growth and development and were significantly higher in the mid to late stages of growth than those in supplied solution. The above results would be used as a fundamental data for the correction in the inorganic element concentrations of drained solution for semi-forcing hydroponic cultivation of tomato.

Optimal Operation of Gas Engine for Biogas Plant in Sewage Treatment Plant (하수처리장 바이오가스 플랜트의 가스엔진 최적 운영 방안)

  • Kim, Gill Jung;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.2
    • /
    • pp.18-35
    • /
    • 2019
  • The Korea District Heating Corporation operates a gas engine generator with a capacity of $4500m^3 /day$ of biogas generated from the sewage treatment plant of the Nanji Water Recycling Center and 1,500 kW. However, the actual operation experience of the biogas power plant is insufficient, and due to lack of accumulated technology and know-how, frequent breakdown and stoppage of the gas engine causes a lot of economic loss. Therefore, it is necessary to prepare technical fundamental measures for stable operation of the power plant In this study, a series of process problems of the gas engine plant using the biogas generated in the sewage treatment plant of the Nanji Water Recovery Center were identified and the optimization of the actual operation was made by minimizing the problems in each step. In order to purify the gas, which is the main cause of the failure stop, the conditions for establishing the quality standard of the adsorption capacity of the activated carbon were established through the analysis of the components and the adsorption test for the active carbon being used at present. In addition, the system was applied to actual operation by applying standards for replacement cycle of activated carbon to minimize impurities, strengthening measurement period of hydrogen sulfide, localization of activated carbon, and strengthening and improving the operation standards of the plant. As a result, the operating performance of gas engine # 1 was increased by 530% and the operation of the second engine was increased by 250%. In addition, improvement of vent line equipment has reduced work process and increased normal operation time and operation rate. In terms of economic efficiency, it also showed a sales increase of KRW 77,000 / year. By applying the strengthening and improvement measures of operating standards, it is possible to reduce the stoppage of the biogas plant, increase the utilization rate, It is judged to be an operational plan.

Initial Analysis of the Underground Air Among Jeju Lava Forest(Sumgol) and its Healing Effect on the Human Body (제주 현무암 '숲' 지하 공기(숨골: Sumgol)의 분석과 인체에 미치는 치유 효과)

  • Sin, SBangsik;Kim, Hyek Nyeon;Lee, Deok Hee;Kim, Tae Seung;Kim, Yong Hwan;Kang, Chang Hee;Song, Kyu Jin;Lee, Hyung H.
    • Journal of Naturopathy
    • /
    • v.11 no.1
    • /
    • pp.18-30
    • /
    • 2022
  • Background: It was to develop an air purification system (APS) using an underground air purification layer to verify the effect of basalt forest's underground air (sumgol) on a volcanic Jeju. Finally, it is necessary to analyze these purified air components and their usefulness to the human body in an air experience center. Purpose: It was to collect basalt forest air, analyze its composition, and explore its effect on the human body. Methods: We APS devices installed at four points in the Papaville area of Jeju. The air discharged from the APS was collected and analyzed the recycling components. An installed experience room filled with negative ions is about 5,000 ions/m3. After allowing the participants to stay for 60 to 120 minutes, we investigated the state of blood vessels. Results: In the analysis of the underground air, the O2 concentration was 21.18%, which was higher than the average oxygen concentration of 20.94% in the atmosphere. However, Formaldehyde was not detected, and the CO2 was 419 ppm, which was lower than that of indoor air. The PM2.5 concentration was less than 24 ㎍/m3 and detected anions over 5.000 /m3. The experiencer's vascular states improved, and the increase in pulse rate and stress relief were high. Conclusions: The valuable ingredients identified by analyzing the air were precious for natural healing. The experience results showed that it effectively improved the pulse rate, blood vessels, and stress. These conditions may be highly beneficial as a new area for expanding the basalt lava forest in the Jeju area into the natural healing and wellness industry.

No-tillage Agriculture of Korean-Type on Recycled Ridge I. Changes in Physical Properties : Soil Crack, Penetration Resistance, Drainage, and Capacity to Retain Water at Plastic Film Greenhouse Soil by Different Tillage System (두둑을 재활용한 한국형 무경운 농업 I. 경운방법에 따른 시설재배 토양의 물리적 특성: 균열, 관입저항, 배수, 보수력 변화)

  • Yang, Seung-Koo;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.699-717
    • /
    • 2016
  • This study was carried out to investigate the effect of no-tillage on sequential cropping supported from recycling of first crop ridge on the growth of pepper plant and physical properties of soil under green house condition. 1. Degree of crack on soil by tillage and no-tillage Soil cracks found in ridge and not found in row. At five months of tillage, crack number and crack length in length ridge were 3 and 37~51 cm in tillage. Maximum width and maximum depth in length ridge were 30 mm and 15.3cm in tillage. Crack number and crack length in width ridge were 7.5 and 7~28 cm in tillage. Maximum width and maximum depth in width ridge were 29 mm and 15.3 cm in tillage. At a year of no-tillage, crack number and crack length in length ridge were 1.0 and 140~200 cm in tillage. Maximum width and maximum depth in length ridge were 18 mm and 30 cm in a year of no-tillage. Crack number and crack length in width ridge were 11 and 6~22 cm in a year of no-tillage. Maximum width and maximum depth in width ridge were 22 mm and 18.5 cm in a year of no-tillage. Soil crack was not found at 2 years of no-tillage in sandy Jungdong series (jd) soil. Soil crack was found at 7 years of no-tillage in clayish Jisan series (ji) soil. 2. Penetration resistance on soil Penetration resistance was increased significantly at no-tillage in Jungdong series (jd). Depth of cultivation layer was extended at no-tillage soil compared with tillage soil. Penetration resistance of plow pan was decreased at 1 year of no-tillage compared with than tillage soil. Penetration resistance was linearly increased with increasing soil depth at tillage in Jisan series (ji). Penetration resistance on top soil was remarkably increased and then maintained continuously at no-tillage soil. 3. Drainage and moisture content of soil Moisture content of ridge in top soil was not significant difference at both tillage and no-tillage. Moisture content of ridge in 20 cm soil was 14% at no-tillage soil and 25% at tillage soil. 4. Change of capacity to retain water in soil Capacity to retain water in top soil was not significant difference at 1 bar both tillage and no-tillage. Capacity to retain water in soil was slightly higher tendency in 1 year and 2 years of no-tillage soil than tillage soil. Capacity to retain water in soil was increased at 15 bar both tillage and no-tillage. Capacity to retain water in subsoil was slightly higher tendency at 1 bar and 3 bar in 2 years of no-tillage than tillage soil and a year of no-tillage soil.