DOI QR코드

DOI QR Code

Optimal Operation of Gas Engine for Biogas Plant in Sewage Treatment Plant

하수처리장 바이오가스 플랜트의 가스엔진 최적 운영 방안

  • Kim, Gill Jung (Graduate School of Energy& Environment, Seoul National University of Science&Technology) ;
  • Kim, Lae Hyun (Department of Chemical & Biomolecular Engineering, Seoul National University of Science&Technology)
  • 김길정 (서울과학기술대학교 에너지환경대학원) ;
  • 김래현 (서울과학기술대학교 화공생명공학과)
  • Received : 2019.03.14
  • Accepted : 2019.05.17
  • Published : 2019.06.30

Abstract

The Korea District Heating Corporation operates a gas engine generator with a capacity of $4500m^3 /day$ of biogas generated from the sewage treatment plant of the Nanji Water Recycling Center and 1,500 kW. However, the actual operation experience of the biogas power plant is insufficient, and due to lack of accumulated technology and know-how, frequent breakdown and stoppage of the gas engine causes a lot of economic loss. Therefore, it is necessary to prepare technical fundamental measures for stable operation of the power plant In this study, a series of process problems of the gas engine plant using the biogas generated in the sewage treatment plant of the Nanji Water Recovery Center were identified and the optimization of the actual operation was made by minimizing the problems in each step. In order to purify the gas, which is the main cause of the failure stop, the conditions for establishing the quality standard of the adsorption capacity of the activated carbon were established through the analysis of the components and the adsorption test for the active carbon being used at present. In addition, the system was applied to actual operation by applying standards for replacement cycle of activated carbon to minimize impurities, strengthening measurement period of hydrogen sulfide, localization of activated carbon, and strengthening and improving the operation standards of the plant. As a result, the operating performance of gas engine # 1 was increased by 530% and the operation of the second engine was increased by 250%. In addition, improvement of vent line equipment has reduced work process and increased normal operation time and operation rate. In terms of economic efficiency, it also showed a sales increase of KRW 77,000 / year. By applying the strengthening and improvement measures of operating standards, it is possible to reduce the stoppage of the biogas plant, increase the utilization rate, It is judged to be an operational plan.

한국지역난방공사에서 난지 물재생센터의 하수처리 설비로 부터 발생하는 $45,300m^3$/일의 바이오가스를 연료로 1,500 kW, 2대 규모의 엔진 발전기를 운영하고 있다. 그러나 바이오가스 발전 플랜트의 실제 운영 경험이 미미하고, 축적된 기술 및 노하우 부족으로 가스엔진의 잦은 고장과 정지로 많은 경제적 손실이 발생하고 있다. 따라서 이 발전 플랜트의 안정적인 운영을 위한 기술적 근본 대책 마련이 필요한 실정이다. 본 연구에서는 난지 물재생센터의 하수처리장에서 발생하는 바이오가스를 이용한 가스엔진 플랜트의 일련의 공정상의 문제점을 확인하고, 각 단계별 문제점을 최소화 하여 실제 운전의 최적화 방안을 마련하였다. 먼저 고장 정지의 주요 원인인 발생가스의 정제를 위해 현재 사용 중인 활성탄에 대한 성분분석 및 흡착실험을 통해 활성탄의 흡착능력 품질 기준 마련을 위한 여건을 조성하였다. 또한, 불순물을 최소화하기 위한 활성탄의 교체주기의 기준수립, 황화수소 측정주기 강화, 활성탄 국산화, 설비개선 등 바이오플랜트 운영기준 강화 및 개선방안을 적용하여 실제운전에 적용하였다. 그 결과 가스엔진 1호기는 530%, 2호기는 250%의 정상운전 가동시간이 증가되는 운영실적을 보였다. 또한 통풍구의 설비개선을 통해 작업공정을 줄이고, 정상 운전시간과 가동률을 높일 수 있었다. 경제적으로도 77,000천원/년의 매출증대 효과를 나타냈다, 이와 같이 운영기준의 강화 및 개선방안을 적용하여, 바이오가스 플랜트의 고장 정지를 줄이고 가동률을 높여, 안정적인 운영을 하는 것이 현실적인 바이오가스 플랜트의 최적 운영방안으로 판단된다.

Keywords

References

  1. Kim, Y. J., 2015, Study on numerical model and pressure swing adsorption process experiment for $CH_4$/$CO_2$ separation from biogas, KyungHee University, Ph.D. Dissertation (in Korea)
  2. Prabucki, M. J., Doczyck, W. and Asmus, D., 2001, Removal of organic silicon compounds from landfill and sewer gas, Proceedings of Sardinia 2001 Eighth International Waste Management and Landfill Symposium, Vol. 2, pp. 631-639.
  3. Steven, S. and Filippo, T., Six reasons to dry biogas to a low dewpoint before combustion in a CHP engine, www.parker.com/literature/United%20Kingdom/PAR6841_Whitepaper_v3.pdf.
  4. Kim, G. J., Kim, L. H.., 2016, Analysis of cause of engine failure during power generation using biogas in sewage treatment plant, Journal of Energy Engineering v.25, No.4, Dec pp. 13-29 https://doi.org/10.5855/ENERGY.2016.25.4.013
  5. 한국지역난방공사, 2012, 난지 물재생센터 바이오 가스엔진 구매, 탈황기 Vendor print pp. 11
  6. Noyola1,*, Juan Manuel Morgan-Sagastume1& Jorge E. Lopez-Hernan, 2006 Treatment of biogas produced in anaerobic reactors for domesticwastewater: odor control and energy/resource recoveryAdalberto, Reviews in Environmental Science and Bio/Technology vol 5: pp 93-114 https://doi.org/10.1007/s11157-005-2754-6
  7. Muhammad Rashed Al Mamun and Shuichi Torii, 2017, Enhancement of Methane Concentration by Removing Contaminants from Biogas Mixtures Using Combined Method of Absorption and Adsorption, Hindawi International Journal of Chemical Engineering, pp1-9
  8. Schweigkofler, M., Niessner, R., 2001, Removal of siloxanes in biogases, Journal of Hazardous Materials, B83, pp183-196 https://doi.org/10.1016/S0304-3894(00)00318-6
  9. Rafaela Lora Grandoa, Adelaide Maria de Souza Antunea,b, Fabiana Valeria da Fonsecaa, Antoni Sanchezc, Raquel Barrenac, Xavier Fontc, 2017, Technology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development, Renewable and Sustainable Energy Reviews 80, pp 44-53 https://doi.org/10.1016/j.rser.2017.05.079