• 제목/요약/키워드: Recycling Behavior

Search Result 292, Processing Time 0.021 seconds

Investigating meso-scale low-temperature fracture mechanisms of recycled asphalt concrete (RAC) via peridynamics

  • Yuanjie Xiao;Ke Hou;Wenjun Hua;Zehan Shen;Yuliang Chen;Fanwei Meng;Zuen Zheng
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.605-619
    • /
    • 2024
  • The increase of reclaimed asphalt pavement (RAP) content in recycled asphalt concrete (RAC) is accompanied by the degradation of low-temperature cracking resistance, which has become an obstacle to the development of RAC. This paper aims to reveal the meso-scale mechanisms of the low-temperature fracture behavior of RAC and provide a theoretical basis for the economical recycling of RAP. For this purpose, micromechanical heterogeneous peridynamic model of RAC was established and validated by comparing three-point bending (TPB) test results against corresponding numerical simulation results of RAC with 50% RAP content. Furthermore, the models with different aggregate shapes (i.e., average aggregates circularity (${\bar{C_r}}=1.00$, 0.75, and 0.50) and RAP content (i.e., 0%, 15%, 30%, 50%, 75%, and 100%) were constructed to investigate the effect of aggregate shape and RAP content on the low-temperature cracking resistance. The results show that peridynamic models can accurately simulate the low-temperature fracture behavior of RAC, with only 2.9% and 13.9% differences from the TPB test in flexural strength and failure strain, respectively. On the meso-scale, the damage in the RAC is mainly controlled by horizontal tensile stress and the stress concentration appears in the interface transition zone (ITZ). Aggregate shape has a significant effect on the low-temperature fracture resistance, i.e., higher aggregate circularity leads to better low-temperature performance. The large number of microcracks generated during the damage evolution process for the peridynamic model with circular aggregates contributes to slowing down the fracture, whereas the severe stress concentration at the corners leads to the fracture of the aggregates with low circularity under lower stress levels. The effect of RAP content below 30% or above 50% is not significant, but a substantial reduction (16.9% in flexural strength and 16.4% in failure strain) is observed between the RAP content of 30% and 50%. This reduction is mainly attributed to the fact that the damage in the ITZ region transfers significantly to the aggregates, especially the RAP aggregates, when the RAP content ranges from 30% to 50%.

A Study on Consumer Eco-friendly Behavior Utilizing the Photovoice Methodology : Focus Group Study (포토보이스(Photovoice) 기법을 활용한 소비자의 친환경 행동에 대한 연구 : Focus Group Study)

  • Lee, Il-han
    • Journal of Venture Innovation
    • /
    • v.6 no.4
    • /
    • pp.63-81
    • /
    • 2023
  • The purpose of this study was to utilize the Photovoice qualitative research method targeting university students. Through this method, we aimed to understand the perceptions of environmental issues, environmental barriers, and eco-friendly behaviors among university students. By employing the Photovoice methodology, we sought to share the perspectives of university students on eco-friendly behaviors, explore the motivations and manifestations of these behaviors, and reflect on their significance. The ultimate goal was to provide practical suggestions for fostering eco-friendly behaviors through an in-depth examination of the visual narratives and reflections of university students. Under the overarching theme of the environment, participants were given the opportunity to individually select and explore three specific sub-themes: 'My Concept of the Environment,' 'Environmental Barriers in My Life,' and 'My Eco-friendly Behaviors.' Participants engaged in the process of capturing photographs from their daily lives related to each theme, expressing their thoughts and perspectives through the selected images. Subsequently, they shared and discussed their insights, actively listening to the opinions of others in the group. The results of this study revealed several key findings. Firstly, participants assigned meaning to the photographs they selected by directly capturing aspects related to the environment, such as 'waste,' 'discomfort,' 'fine dust=environmental pollution,' and 'indifference.' Secondly, participants attributed meaning to the selected photographs related to environmental barriers, associating them with concepts like 'invisibility,' 'apathy,' 'social stigma,' 'inefficiency,' and 'compulsion.' Lastly, participants ascribed significance to photographs selected in the context of eco-friendly behaviors, with themes like 'recycling,' 'energy conservation,' 'reuse,' and 'reducing the use of disposable items.' Based on these research findings, the confirmation of the V-A-B (Values-Attitudes-Behavior) model was established. It was observed that consumers structure a hierarchical relationship between their personal values, attitudes, and behaviors. The study also identified clear impediments in consumers' daily lives hindering the practice of eco-friendly behaviors. In light of this, the research highlighted the need for strategies to address the discomfort or inconvenience associated with implementing environmentally friendly consumer behaviors. The implications of the study suggest that interventions or solutions are necessary to alleviate barriers and promote a more seamless integration of eco-friendly practices into consumers' daily routines.

Numerical Study on Thermochemical Conversion of Non-Condensable Pyrolysis Gas of PP and PE Using 0D Reaction Model (0D 반응 모델을 활용한 PP와 PE의 비응축성 열분해 기체의 열화학적 전환에 대한 수치해석 연구)

  • Eunji Lee;Won Yang;Uendo Lee;Youngjae Lee
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.37-46
    • /
    • 2024
  • Environmental problems caused by plastic waste have been continuously growing around the world, and plastic waste is increasing even faster after COVID-19. In particular, PP and PE account for more than half of all plastic production, and the amount of waste from these two materials is at a serious level. As a result, researchers are searching for an alternative method to plastic recycling, and plastic pyrolysis is one such alternative. In this paper, a numerical study was conducted on the pyrolysis behavior of non-condensable gas to predict the chemical reaction behavior of the pyrolysis gas. Based on gas products estimated from preceding literature, the behavior of non-condensable gas was analyzed according to temperature and residence time. Numerical analysis showed that as the temperature and residence time increased, the production of H2 and heavy hydrocarbons increased through the conversion of the non-condensable gas, and at the same time, the CH4 and C6H6 species decreased by participating in the reaction. In addition, analysis of the production rate showed that the decomposition reaction of C2H4 was the dominant reaction for H2 generation. Also, it was found that more H2 was produced by PE with higher C2H4 contents. As a future work, an experiment is needed to confirm how to increase the conversion rate of H2 and carbon in plastics through the various operating conditions derived from this study's numerical analysis results.

Sulfurization Reaction Characteristics of Eu-doped Uranium Oxides (유로퓸 고용(固溶) 우라늄산화물(酸化物)의 황화반응(黃化反應) 특성(特性))

  • Lee, Jae Won;Park, Geun Il;Lee, Jung Won
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.57-64
    • /
    • 2013
  • Sulfurization reaction characteristics of $Eu_2O_3$, uranium oxides($UO_2$, $U_3O_8$), mixture of $Eu_2O_3$ and uranium oxides, Eu-doped uranium oxides($(U,Eu)O_2$, $(U,Eu)_3O_8$), and phase-separated products prepared by HOX (High temperature OXidation) of $(U,Eu)O_2$ were investigated in the temperature range from 400 to $800^{\circ}C$. Only $Eu_2O_3$ in the mixture of $Eu_2O_3$ and uranium oxides was converted into $Eu_3S_4$ by sulfurization reaction at $450^{\circ}C$ without reaction between them. Sulfurization reaction behavior of $(U,Eu)_3O_8$ and $(U,Eu)O_2$ up to $600^{\circ}C$ was similar to $U_3O_8$ and $UO_2$, respectively, while they were sulfurized into Eu-rich $(U,Eu)S_x$ and ${\alpha}-US_2$ at $800^{\circ}C$. In the sulfurization of RE-rich $(U,Eu)_4O_9$ and $U_3O_8$ prepared by high temperature oxidation, it was confirmed that RE-rich $(U,Eu)S_x$ and UOS phases were formed at $600^{\circ}C$. For Eu-rich $(U,Eu)O_2$ and $UO_2$ prepared by reduction of HOX products, it was identified that Eu-rich (U,Eu)OS was formed at $450^{\circ}C$ by sulfurization of Eu-rich $(U,Eu)O_2$, while $UO_2$ remained unreacted.

A Study on the Shear Behavior of Recycled Aggregate Reinforced Concrete Beams without Stirrups (전단보강이 없는 순환골재 철근콘크리트 보의 전단거동에 관한 연구)

  • Lee, Jung-Hoon;Kim, Woo-Suk;Baek, Seung-Min;Kang, Thomas H.K.;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.389-400
    • /
    • 2013
  • Little investigations have been carried out to study the shear behaviors of RC beams with recycled aggregates. So, this experiment investigates the shear performance and suggests the possible application of Recycled Concrete Aggregate (RCA) for building structures. In general, shear strength of reinforced concrete beam without stirrups is dependent on the compressive strength of concrete, the longitudinal steel ratio, and the shear span-to-depth ratio. In this study, total 28 recycled aggregate concrete beams without shear reinforcement were tested by two-point load and all beams were singly reinforced. The variables studied in this investigation are shear span-to-depth ratios (a/d=2, 3 and 4), RCA replacement ratios (0, 15, 30 and 50%) and longitudinal steel ratios (0.80, 1.27 and 1.84%). The designed concrete compressive strength with a 30 MPa is used. This research will play an important role toward the establishment of the structural design standard for RCA concrete.

Crystal Sinking Modeling for Designing Iodine Crystallizer in Thermochemical Sulfur-Iodine Hydrogen Production Process (열화학 황-요오드 수소 생산 공정의 요오드 결정화기 설계를 위한 결정 침강 모델링)

  • Park, Byung Heung;Jeong, Seong-Uk;Kang, Jeong Won
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.768-774
    • /
    • 2014
  • SI process is a thermochemical process producing hydrogen by decomposing water while recycling sulfur and iodine. Various technologies have been developed to improve the efficiency on Section III of SI process, where iodine is separated and recycled. EED(electro-electrodialysis) could increase the efficiency of Section III without additional chemical compounds but a substantial amount of $I_2$ from a process stream is loaded on EED. In order to reduce the load, a crystallization technology prior to EED is considered as an $I_2$ removal process. In this work, $I_2$ particle sinking behavior was modeled to secure basic data for designing an $I_2$ crystallizer applied to $I_2$-saturated $HI_x$ solutions. The composition of $HI_x$ solution was determined by thermodynamic UVa model and correlation equations and pure properties were used to evaluate the solution properties. A multiphysics computational tool was utilized to calculate particle sinking velocity changes with respect to $I_2$ particle radius and temperature. The terminal velocity of an $I_2$ particle was estimated around 0.5 m/s under considered radius (1.0 to 2.5 mm) and temperature (10 to $50^{\circ}C$) ranges and it was analyzed that the velocity is more dependent on the solution density than the solution viscosity.

Effects of Consumer Innovativeness on Environment-friendly Product Satisfaction (소비자 혁신성향이 친환경제품 만족도에 미치는 영향 : 혁신성향, 친환경성향 및 친환경 제품 혁신성의 상호작용효과)

  • IM, Meeja;SONG, Mee Ryoung;CHU, Wujin
    • Journal of Distribution Science
    • /
    • v.17 no.10
    • /
    • pp.125-134
    • /
    • 2019
  • Purpose - Environment-friendly behaviors are diverse and can be motivated by different factors. For example, magnitude of factors affecting recycling behavior could be different from those affecting purchasing of environmentally-friendly products. In this study, the focus is on usage satisfaction of consumers who have purchased environmentally-friendly products. Research design, data, and methodology - For this purpose, data were collected from a total of 345 users of environmentally-friendly products, consisting of 177 users of electric vehicles and 168 users of environmentally-friendly detergents. The study analyzed the relationships among consumer's innovation propensity, consumer's environmental concern, and usage satisfaction. In addition, the moderating effect of the product's innovativeness was examined. Results - The result shows that there is a relationship between consumer's innovation propensity and consumer's environmental concern. In particular, it is shown that both consumer's innovation propensity and consumer's environmental concern have positive effects on usage satisfaction. Further, there was a moderating effect of the product's innovativeness. Namely, products rated higher in innovativeness showed a greater effect of consumer's innovation propensity on usage satisfaction. The degree of the product's innovativeness also affected the directional paths of the relationships. In the electric vehicle (i.e., high product innovativeness) case, consumer's innovation propensity had a direct effect on usage satisfaction, as well as an indirect effect through consumer's environmental concern. In the environmentally-friendly detergent (i.e., low product innovativeness) case, consumer's innovation propensity only had an indirect effect on usage satisfaction, through consumer's environmental concern. Conclusions - Theoretical contributions of this study are as follows. Foremost, this is the first study that suggests an existence of a relationship between consumer's innovation propensity and consumer's environmental concern. Second, this study showed the positive effect of consumer's innovation propensity on usage satisfaction of environmentally-friendly products. Third, this study expanded the scope of previous studies by showing the interaction between consumer's innovation propensity and consumer's environmental concern. Lastly, this study showed that the effect of these variables on usage satisfaction can differ by the degree of innovativeness of the environmentally-friendly product. The results of the study will have implications for marketers and policy makers in formulating marketing activities and policies.

A Proposal of Stress-Strain Relations Model for Recycled-PET Polymer Concrete under Uniaxial Stress (일축 하중을 받는 PET 재활용 폴리머콘크리트의 응력-변형률 모델의 제안)

  • Jo Byung-Wan;Moon Rin-Gon;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.767-776
    • /
    • 2004
  • Polymer concrete shows excellent mechanical properties and chemical resistance compared with conventional normal cement concrete. The polymer concrete is drawing a strong interest as high-performance materials in the construction industry. Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems posed by plastics and save energy. The purposed of this paper is to propose the model for the stress-strain relation of recycled-PET polymer concrete at monotonic uniaxial compression and is to investigate for the stress-strain behavior characteristics of recycled-PET polymer concrete with different variables(strength, resin contents, curing conditions, addition of silane and ages). The maximum stress and strain of recycled-PET polymer concrete was found to increase with an increase in resin content, however, it decreased beyond a particular level of resin content. A ascending and descending branch of stress-strain curve represented more sharply at high temperature curing more than normal temperature curing. Addition of silane increases compressive strength and postpeak ductility. In addition, results show that the proposed model accurately predicts the stress-strain relation of recycled-PET polymer concrete

Dynamic Model Prediction and Validation for Free-Piston Stirling Engines Considering Nonlinear Load Damping (자유피스톤 스털링 엔진의 비선형 부하 감쇠를 고려한 동역학 모델 예측 및 검증)

  • Sim, Kyuho;Kim, Dong-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.985-993
    • /
    • 2015
  • Free-piston Stirling engines (FPSEs) have attracted much attention in the renewable energy field as a key device in the conversion from thermal to mechanical energy, and in the recycling of waste energy. Traditional Stirling engines consist of two pistons that are connected by a mechanical link, while FPSEs are formed as a vibration system by connecting each piston to a spring without a physical link. To ensure the correct design and control of operations, this requires elaborate dynamic-performance predictions. In this paper, we present the performance-prediction methodology using a linear and nonlinear dynamic analytical model considering the external load of FPSEs. We perform linear analyses to predict the operating point of the engine using the root locus technique. Using nonlinear analysis, we also predict the amplitude of pistons by performing numerical integration considering both the linear and nonlinear damping terms of the external load. We utilize the predicted dynamic behavior to predict the engine performance. In addition, we compare the experiment results and existing model predictions for RE-1000 to verify the reliability of the analytical model.

Characteristics of Coals Extracted Using Solvent at Mild and High Temperature Conditions (온순조건과 고온조건에서 용매 추출한 석탄의 특성 비교)

  • Park, Keun Yong;Choi, Ho Kyung;Kim, Sang Do;Yoo, Ji Ho;Chun, Dong Hyuk;Rhim, Young Joon;Lim, Jeong Han;Lee, Si Hyun;Na, Byung Ki
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.529-533
    • /
    • 2012
  • In this study, we compare various physicochemical properties of solvent extracted coals obtained at both mild and high temperature conditions. In order to characterize the extraction behavior, experiments were performed using a sub-bituminous coal (Kideco) and a polar solvent (N-methyl-2-pyrrolidinone, NMP), where the extraction temperature and the effect of solvent recycling were evaluated. As the extraction temperature increased up to $350^{\circ}C$, an extraction yield and a calorific value of the extracted coal increased, while an ash content of the extracted coal decreased. FT-IR results revealed that the surface of the coal extracted at $350^{\circ}C$ was found to contain more amide, aromatic ester, and aliphatic ether groups than that at the lower temperatures. The result of MALDI-TOF/MS analysis confirmed that the smaller molecules with 300~500 m/z were extracted at a mild condition, while the bigger molecules in the range of 500~1500 m/z were extracted at the high temperature.