DOI QR코드

DOI QR Code

Dynamic Model Prediction and Validation for Free-Piston Stirling Engines Considering Nonlinear Load Damping

자유피스톤 스털링 엔진의 비선형 부하 감쇠를 고려한 동역학 모델 예측 및 검증

  • Sim, Kyuho (Dept. of Mechanical System Design Engineering, Seoul Nat'l Univ. of Sci. and Tech.) ;
  • Kim, Dong-Jun (Dept. of Mechanical System Design Engineering, Seoul Nat'l Univ. of Sci. and Tech.)
  • 심규호 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 김동준 (서울과학기술대학교 기계시스템디자인공학과)
  • Received : 2015.04.29
  • Accepted : 2015.07.16
  • Published : 2015.10.01

Abstract

Free-piston Stirling engines (FPSEs) have attracted much attention in the renewable energy field as a key device in the conversion from thermal to mechanical energy, and in the recycling of waste energy. Traditional Stirling engines consist of two pistons that are connected by a mechanical link, while FPSEs are formed as a vibration system by connecting each piston to a spring without a physical link. To ensure the correct design and control of operations, this requires elaborate dynamic-performance predictions. In this paper, we present the performance-prediction methodology using a linear and nonlinear dynamic analytical model considering the external load of FPSEs. We perform linear analyses to predict the operating point of the engine using the root locus technique. Using nonlinear analysis, we also predict the amplitude of pistons by performing numerical integration considering both the linear and nonlinear damping terms of the external load. We utilize the predicted dynamic behavior to predict the engine performance. In addition, we compare the experiment results and existing model predictions for RE-1000 to verify the reliability of the analytical model.

자유피스톤 스털링 엔진(Free-piston Stirling Engine, FPSE)은 석유자원 고갈로 인한 에너지 비용 상승으로 활발하게 연구되고 있는 신재생 에너지와 폐에너지 회수를 위한 핵심 에너지 변환장치로 주목받고 있다. 기존 스털링 엔진은 두 개의 피스톤과 기구부로 구성되어 열에너지를 기계동력을 변환한다. FPSE 는 기존 스털링 엔진의 단점인 기구부를 제거하고 각각의 피스톤에 스프링을 연결하여 진동 시스템으로 구성된 엔진으로서, 올바른 엔진 설계 및 운전 제어를 위하여 정교한 동역학 성능 예측이 필수적이다. 본 논문에서는 FPSE 의 외부 부하를 고려한 동역학 성능 예측 모델을 제시하고 선형 및 비선형 해석을 통한 성능 예측 방법론을 제시하였다. 선형 해석은 고유치 해석을 통한 근궤적 선도를 이용하여 엔진의 작동점을 예측한다. 비선형 해석은 외부 부하 감쇠의 선형항과 비선형항을 고려하여 수치적분을 통해 엔진 피스톤의 진폭을 예측한다. 이러한 동역학 성능 데이터는 엔진 출력 성능 예측에 활용된다. 또한, 본 논문의 해석 모델은 대표적인 FPSE 인 RE-1000 의 실험결과 및 기존 해석 연구들과 비교/검증하여 신뢰성을 검토하였다.

Keywords

References

  1. Kang, B. H., Yun, C. H. and Ahn, J., 2013, "Impact of Residential CHP Systems on Greenhouse Gas Emissions in Korea," Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 25, No. 10, pp. 555-561. https://doi.org/10.6110/KJACR.2013.25.10.555
  2. Korea Energy Management Corporation, "Gas Co-Generation System," Technical Report.
  3. Hong, Y. J., Ko, J. S., Kim, H. B. and Park, S. J., 2011, "Design and Fabrication of 1kW Class Stirling Engine," Proceedings of 2011 Korean Soc. Mech. Eng. Conf., No. 7019, pp. 334-346.
  4. Urieli, I. and Berchowitz, D. M, 1984, Stirling Cycle Engine Analysis, Adam Hilger Ltd.
  5. Beale, W. T., 1969, "Free-piston Stirling Engines -Some Model Tests and Simulations," SAE Paper No 690230.
  6. Schreiber, J. G., Geng, S. M. and Lorenz, G. V., 1986, "RE-1000 Free-Piston Stirling Engine Sensitivity Test Results," NASA TM-88846.
  7. Choi, J. J., Park, B. S., Kim, H. J. and Song, D. S., 2011, "The Operation Characteristic of Two Domestic Stirling Engine Cogeneration Systems," Proceeding of 2011 Korean Journal of Air-Conditioning and Refrigeration Engineering Summer Conference, pp. 1262-1265
  8. Redlich, R.W. and Berchowitz, D. M., 1984, "Linear Dynamics of Free-Piston Stirling Engines," Department of Electrical and Computer Engineering, Ohio University, Athens, Ohio, Sunpower Incorporated, Athens, Ohio.
  9. Riofrio, J. A., Al-Dakkan, K., Hofacker, M. K. and Barth, E. J., 2008, "Control-Based Design of Free-Piston Stirling Engine," Proceedings of 2008 American Control Conference, WeC09.4, pp. 1533-1538.
  10. Byun, H. H., Choi, H. O. and Shin, J. K., 1994, "Dynamic Analysis of Free-Piston Stirling Engine Using Ideal Adiabatic Model," Trans. Korean Soc. Mech. Eng., Vol. 18, No. 7, pp.1751-1758. https://doi.org/10.22634/KSME.1994.18.7.1751
  11. Choudhary, F., 2014, "Hopf Instabilities in Free Piston Stirling Engines," Journal of Computational and Nonlinear Dynamics, Vol. 9, No. 2, pp. 021003-1-021003-11. https://doi.org/10.1115/1.4025123
  12. Formosa, 2011, "Coupled Thermodynamic-Dynamic Semi-Analytical Model of Free Piston Stirling Engines," Energy Conversion and Management 52 2098-2109. https://doi.org/10.1016/j.enconman.2010.12.014
  13. Walker, G. and Senft, J., 1985, Free Piston Stirling Engines, Springer-Verlag, Berlin.
  14. Rogdakis, E. D., Bormpilas, N. A. and Koniakos, I. K., 2004, "A Thermodynamics Study for The Optimization of Stable Operation of Free Piston Stirling Engines," Energy Conversion and Management, Vol. 45, No. 4, pp. 575-593. https://doi.org/10.1016/S0196-8904(03)00175-4
  15. Karabulut, H., 2011, "Dynamic Analysis of A Free Piston Stirling Engine Working with Closed and Open Thermodynamic Cycles," Renewable Energy, Vol. 36, pp. 1704-1709. https://doi.org/10.1016/j.renene.2010.12.006

Cited by

  1. Identification of Damping Characteristics of Free-piston Stirling Engines via Nonlinear Dynamic Model Predictions vol.26, pp.3, 2016, https://doi.org/10.5050/KSNVE.2016.26.3.248