• Title/Summary/Keyword: Recycling Behavior

Search Result 292, Processing Time 0.037 seconds

Compression Strength Behavior of Mixed Soil Recycling Bottom Ash for Surface Layer Hardening (매립석탄회를 재활용한 표층연약지반 개량용 혼합토의 압축강도 특성 연구)

  • Oh, Gi-dae;Kim, Kyoung Yul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.287-293
    • /
    • 2019
  • Domestic thermal power plant fly ash is at a situation which emissions are increasing every year. Comparing to Fly Ash, Bottom Ash is only 15 %, but it's recycling rate is low, so most of them is being buried in the ground. However, landfill site of every power plant is full, and the construction of a new landfill is difficult. To solve this problem, the best solution is to use Bottom Ash as a landfill of large-scale civil engineering projects. The purpose of this study was to investigate the compression strength behavior characteristics of weak clay and uniaxial compression test to examine the applicability of surface soil solidification method of mixed soils mixed with industrial waste coal ash and weak clay which is buried in bulk. As a result of the test, the fluidity of the Mixed soil with clay + bottom ash + cement was improved to 200 mm at the water content of 91-92 %. The uniaxial compressive strength was also good for the mixed soils (clay + bottom ash + cement) meeting the required strength of 159 kN/㎡ at 28 days. However, the other samples did not meet the required strength. In this study, the prediction equations for the compression strength behavior by cement and curing period were presented.

A Study on the Synthesis Behavior of Lithium Hydroxide by Type of Precipitant for Lithium Sulfate Recovered from Waste LIB (폐리튬이차전지에서 회수된 황산리튬 전구체로부터 침전제 종류별 수산화리튬 제조 거동 연구)

  • Joo, Soyeong;Kim, Dae-Guen;Byun, Suk-Hyun;Kim, Yong Hwan;Shim, Hyun-Woo
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.44-52
    • /
    • 2021
  • This study investigated the effect of the type of alkaline precipitant used on the synthesis of lithium hydroxide by examining the behavior of lithium hydroxide produced using lithium sulfate recovered from a waste lithium secondary battery as a raw material. The double-replacement reaction (DRR) process was used to remove the impurities contained in the lithium salt precursor of lithium sulfate and to improve the efficiency of the synthesis of lithium hydroxide. The experiment was conducted by control the molar ratio of the precursor ([Li]/[OH]), the reaction temperature, and the composition of the alkaline precipitant (KOH, Ca(OH)2, Ba(OH)2) used for the production of highly-crystalline lithium hydroxide. A secondary solid-liquid separation was performed following the reaction to remove the impurities generated, and the purified aqueous solution of lithium hydroxide was evaporated to remove the moisture and obtain the product as a powder. The crystallinity and synthesis behavior of the product were examined.

The Hydrogen Reduction Behavior of MoO3 Powder (MoO3 분말의 수소환원거동)

  • Koo, Won Beom;Yoo, Kyoungkeun;Kim, Hanggoo
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.29-36
    • /
    • 2022
  • The hydrogen reduction behavior of molybdenum oxides was studied using a horizontal-tube reactor. Reduction was carried out in two stages: MoO3 → MoO2 and MoO2 → Mo. In the first stage, a mixed gas composed of 30 vol% H2 and 70 vol% Ar was selected for the MoO3 reduction because of its highly exothermic reaction. The temperature ranged from 550 to 600 ℃, and the residence time ranged from 30 to 150 min. In the second step, pure H2 gas was used for the MoO2 reduction, and the temperature and residence time ranges were 700-750 ℃ and 30-150 min, respectively. The hydrogen reduction behavior of molybdenum oxides was found to be somewhat different between the two stages. For the first stage, a temperature dependence of the reaction rate was observed, and the best curve fittings were obtained with a surface reaction control mechanism, despite the presence of intermediate oxides under the conditions of this study. Based on this mechanism, the activation energy and pre-exponential were calculated as 85.0 kJ/mol and 9.18 × 107, respectively. In addition, the pore size within a particle increases with the temperature and residence time. In the second stage, a temperature dependence of the reaction rate was also observed; however, the surface reaction control mechanism fit only the early part, which can be ascribed to the degradation of the oxide crystals by a volume change as the MoO2 → Mo phase transformation proceeded in the later part.

Carbonation Behavior of Lightweight Foamed Concrete Using Coal Fly Ash

  • Lee, Jae Hoon;Lee, Ki Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.354-361
    • /
    • 2016
  • The purpose of this study was to prepare lightweight foamed concrete by mixing coal fly ash of circulating fluidized bed combustion(CFBC) with cement, and to develop uses for recycling by analyzing carbonation behavior resulting from a change in conditions for pressurized carbonation. For concrete, CFBC coal fly ash was mixed with Portland cement to the water-binder ratio of 0.5, and aging was applied at room temperature after 3 days of curing at $20^{\circ}C$, RH 60%. For carbonation, temperature was fixed at $60^{\circ}C$ and time at 1 h in the use of autoclave. Pressures were controlled to be $5kgf/cm^2$ and the supercritical condition of $80kgf/cm^2$, and gas compositions were employed as $CO_2$ 100% and $CO_2$ 15%+N2 85%. In the characteristics of produced lightweight concrete, the characteristics of lightweight foamed concrete resulting from carbonation reaction were affirmed through rate of weight change, carbonation depth test, air permeability, and processing analysis for the day 28 specimen. Based on these results, it is concluded that the present approach could provide a viable method for mass production of eco-friendly lightweight foamed concrete from CFBC coal fly ash stabilized by carbonation.

An Experimental Study on Reusing of Waste Materials in Ligh-Weigh Composite Bridge Deck for Civil Structures (폐기물의 재이용과 경량 합성 상판 개발을 위한 실험적 연구)

  • 김경진;박제선;민창동;오오다도시아끼
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.123-130
    • /
    • 1994
  • In this paper, a development of composite bridge decks was proposed for design of civil and architectural structures to reuse the empty cans and plastics etc. The experimental specimens were made of rigid foamed urethane taking advantage of corrosionlessness in steel bridge decks, and simplicity in the field construction. 'Therefore, introducing the empty cans into the rigid foamed urethane, this experimentation have been carried out to demonstrate and evaluate the structural behavior by means of loading and vibration tests in composite bridge decks. Consequently, it was possible that had a good effect on the structural behavior by absorbing the strain due to the low elasticity of rigid foamed urethane, and not influence to cans in composite bridges.

Structural Behavior of Reinforced Concrete Frames Strengthened with Infilled Wall Using Concrete Blocks Made in Recycled Aggregates (재생콘크리트 보강블록 끼움벽체로 보강한 철근콘크리트 골조의 구조거동)

  • Kim Sun-Woo;Lee Gab-Won;Park Wan-Shin;Han Byung-Chan;Choi Chang-Sik;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.76-79
    • /
    • 2004
  • The use of recycled aggregate concrete is increasing faster than the development of appropriate design recommendations. This paper is making advances in the recycling of waste concrete material for use as recycled aggregate to make secondary concrete product. Using recycled aggregates from demolished concrete, we manufactured concrete blocks to experiment overall performance in feasible performances. This paper reports limited experimental data on the structural performance of shear wall used concrete blocks made in recycled aggregates. Reinforced concrete frame and shear walls were tested to determine their diagonal cracking and ultimate shear behavior. The variable in the test program was the existence of infilled wall used concrete blocks Made in recycled aggregates. Based on the experimental results, Infilled wall has a high influence on the maximum strength and initial stiffness of reinforced concrete frame. Structural performance of specimen WSB1 and WSB2 is quite different from RCF specimen, particularly strength, stiffness and energy dissipation capacity.

  • PDF

Orientation of Locus of Control and Environmental Behavior in High School Students (고등학생들의 성별 조절점 방향 실태 및 환경 행동과의 관련성 조사)

  • 박진희;장남기
    • Hwankyungkyoyuk
    • /
    • v.9 no.1
    • /
    • pp.17-29
    • /
    • 1996
  • 'Control of Locus of Reinforcement(LOCR)' is considered one of the main important factors on responsible environmental behaviors(REB). It is defined as 'an individual's perception of his or her ability to bring about change through his or her behavior'. This phychological construct is divided in two, external locus and internal locus. Internal locus of reinforcement is important as predictor for REB. Lately, 'The Environmental Action Internal Control Index:EAICI' was developed. It is a valid and reliable instrument to measure relationships of two variables. The purposes of this study were to analyse the orientation of LOCR in high school students and relations with LOCR to REB. By the results, EAICI scores of total students, males, females are 99.83, 95.10, 104.56, respectively. LOCR of females was stronger and more internal than one of males. The item scores for behaviors that reduce the amount of household trash by reusing and recycling and convince someone to do this are 4.31, 4.05, respectively. The item scores for behaviors that convince someone to sign a petition regarding on environmental issues, convince someone to reuse envelopes by putting a label over the old address and convince someone to keep car tires properly inflated are 3.09, 3.09, 3.04, respectively. It shows that EAICI scores are dependent upon the degree of the chances and experiences to meet the various environmental events.

  • PDF

Adsorption Treatment Characteristics of Cadmium Ion Containing Wastewater Using Waste Tire as an Adsorbent (폐타이어를 흡착제로 한 카드뮴 함유 폐수 처리 특성)

  • Baek, Mi-Hwa;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.498-503
    • /
    • 2006
  • Adsorption features of $Cd^{2+}$ on waste tire particles have been investigated for the purpose of enhanced wastes recycling along with the development of an economic process for wastewater treatment. The isoelectric point of waste tire particles was found to be ca. pH 7 and the adsorbed amount of $Cd^{2+}$ was increased with pH under experimental conditions. The variation of the adsorption behavior of $Cd^{2+}$ with pH was well explained by the change of the electrokinetic potential of waste tire particles according to the pH. Adsorption of $Cd^{2+}$ was observed to reach its equilibrium within 45 minutes after the adsorption started under experimental conditions and followed the Freundlich model well. Kinetic analysis showed that the adsorption reaction of $Cd^{2+}$ was second order and thermodynamic estimation substantiated the endothermic behavior of $Cd^{2+}$ adsorption. As the amount of adsorbent increased, more adsorption of $Cd^{2+}$ was accomplished and the adsorption capacity of adsorbent was found to be enhanced by its pre-treatment with NaOH. Also, the adsorption of adsorbate was promoted as the ionic strength of wastewater was increased.

Behavior of recycled steel fiber-reinforced concrete beams in torsion- experimental and numerical approaches

  • Mohammad Rezaie Oshtolagh;Masood Farzam;Nima Kian;Hamed Sadaghian
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.173-184
    • /
    • 2023
  • In this study, mechanical, flexural post-cracking, and torsional behaviors of recycled steel fiber-reinforced concrete (RSFRC) incorporating steel fibers obtained from recycling of waste tires were investigated. Initially, three concrete mixes with different fiber contents (0, 40, and 80 kg/m3) were designed and tested in fresh and hardened states. Subsequently, the flexural post-cracking behaviors of RSFRCs were assessed by conducting three-point bending tests on notched beams. It was observed that recycled steel fibers improve the post-cracking flexural behavior in terms of energy absorption, ductility, and residual flexural strength. What's more, torsional behaviors of four RSFRC concrete beams with varying reinforcement configurations were investigated. The results indicated that RSFRCs exhibited an improved post-elastic torsional behaviors, both in terms of the torsional capacity and ductility of the beams. Additionally, numerical analyses were performed to capture the behaviors of RSFRCs in flexure and torsion. At first, inverse analyses were carried out on the results of the three-point bending tests to determine the tensile functions of RSFRC specimens. Additionally, the applicability of the obtained RSFRC tensile functions was verified by comparing the results of the conducted experiments to their numerical counterparts. Finally, it is noteworthy that, despite the scatter (i.e., non-uniqueness) in the aspect ratio of recycled steel fiber (as opposed to industrial steel fiber), their inclusion contributed to the improvement of post-cracking flexural and torsional capacities.

Waste to shield: Tailoring cordierite/mullite/zircon composites for radiation protection through controlled sintering and Y2O3 addition

  • Celal Avcioglu;Recep Artir
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2767-2774
    • /
    • 2024
  • In this study, investment casting shell waste successfully utilized to produce cordierite/mullite/zircon composites. Green pellets, consisting of investment casting shell waste, alumina, and magnesia, were prepared and sintered at temperatures between 1250 and 1350 ℃. The influence of the sintering temperature on the crystalline phase composition, densification behavior, flexural strength, microstructure, and radiation shielding properties of the cordierite/mullite/zircon composites is investigated. Phase analysis showed that characteristic cordierite peaks appear at 1250 ℃, but the complete conversation of silica from investment casting shell waste into cordierite requires a sintering temperature of at least 1300 ℃. Notably, the cordierite/mullite/zircon composite sintered at 1350 ℃ exhibited a sixfold increase in flexural strength compared to the ceramic composite directly fabricated from investment casting shell waste at the same sintering temperature. Furthermore, the effect of Y2O3 addition on composites' radiation shielding properties is investigated. The results show that the Y2O3 addition improves densification behavior, enhancing the shielding capabilities of the composites against fast neutron and gamma radiation. Our findings suggest that the developed ceramic composites show significant potential for gamma-ray and neutron shielding applications.