DOI QR코드

DOI QR Code

Behavior of recycled steel fiber-reinforced concrete beams in torsion- experimental and numerical approaches

  • Mohammad Rezaie Oshtolagh (Department of Civil Engineering, University of Tabriz) ;
  • Masood Farzam (Department of Civil Engineering, University of Tabriz) ;
  • Nima Kian (Chair of Structural Concrete, Helmut Schmidt University/University of the Federal Armed Forces Hamburg) ;
  • Hamed Sadaghian (Department of Civil Engineering, University of Tabriz)
  • Received : 2022.05.02
  • Accepted : 2023.04.28
  • Published : 2023.08.25

Abstract

In this study, mechanical, flexural post-cracking, and torsional behaviors of recycled steel fiber-reinforced concrete (RSFRC) incorporating steel fibers obtained from recycling of waste tires were investigated. Initially, three concrete mixes with different fiber contents (0, 40, and 80 kg/m3) were designed and tested in fresh and hardened states. Subsequently, the flexural post-cracking behaviors of RSFRCs were assessed by conducting three-point bending tests on notched beams. It was observed that recycled steel fibers improve the post-cracking flexural behavior in terms of energy absorption, ductility, and residual flexural strength. What's more, torsional behaviors of four RSFRC concrete beams with varying reinforcement configurations were investigated. The results indicated that RSFRCs exhibited an improved post-elastic torsional behaviors, both in terms of the torsional capacity and ductility of the beams. Additionally, numerical analyses were performed to capture the behaviors of RSFRCs in flexure and torsion. At first, inverse analyses were carried out on the results of the three-point bending tests to determine the tensile functions of RSFRC specimens. Additionally, the applicability of the obtained RSFRC tensile functions was verified by comparing the results of the conducted experiments to their numerical counterparts. Finally, it is noteworthy that, despite the scatter (i.e., non-uniqueness) in the aspect ratio of recycled steel fiber (as opposed to industrial steel fiber), their inclusion contributed to the improvement of post-cracking flexural and torsional capacities.

Keywords

References

  1. Aiello, M.A., Leuzzi, F., Centonze, G. and Maffezzoli, A. (2009), "Use of steel fibres recovered from waste tyres as reinforcement in concrete: Pull-out behaviour, compressive and flexural strength", Waste Manag., 29(6), 1960-1970. https://doi.org/10.1016/j.wasman.2008.12.002. 
  2. Almusallam, T., Ibrahim, S.M., Al-Salloum, Y., Abadel, A. and Abbas, H. (2016), "Analytical and experimental investigations on the fracture behavior of hybrid fiber reinforced concrete", Cement Concrete Compos., 74, 201-217. https://doi.org/10.1016/j.cemconcomp.2016.10.002. 
  3. American Concrete Institute (ACI) Committee (1996), ACI 544.1 R-96: State-of-the-Art Report on Fiber Reinforced Concrete, American Concrete Institute, Farmington Hills, MI,
  4. American Concrete Institute (ACI) (2014), Building Code Requirements for Structural Concrete (ACI 318-14) Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14), American Concrete Institute, Farmington Hills, MI, USA. 
  5. Amin, A. and Bentz, E.C. (2018), "Strength of steel fibre reinforced concrete beams in pure torsion", Struct. Concrete, 19(3), 684-694. https://doi.org/10.1002/suco.201700183. 
  6. Aslani, F. and Bastami, M. (2015), "Relationship between deflection and crack mouth opening displacement of self-compacting concrete beams with and without fibers", Mech. Adv. Mater. Struct., 22(11), 956-967. https://doi.org/10.1080/15376494.2014.906689. 
  7. ASTM A615/615b (2009), Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement, ASTM International, West Conshohocken, PA, USA. 
  8. ASTM C143 (1996), Standard Test Method for Slump of Hydraulic Cement Concrete, ASTM International, West Conshohocken, PA, USA. 
  9. ASTM C1688 (2014), Standard Test Method for Density and Void Content of Freshly Mixed Pervious Concrete, ASTM International, West Conshohocken, PA, USA. 
  10. ASTM C39 (2021), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA. 
  11. ASTM C496 (2011), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA. 
  12. Barros, J.A., Pereira, E.N.B., Ribeiro, A.F., Cunha, V.M. and Antunes, J.A.B. (2004), "Self-compacting steel fibre reinforced concrete for precasted sandwich panels: Experimental and numerical research", 6th International RILEM Symposium on Fibre Reinforced Concrete - BEFIB 2004, Varenna, Italy, September. 
  13. Bethoft, K., Samarakoon, S.M.S.M.K., Evangelista, L. and Mikalsen, B. (2018), "Performance of recycled and commercial fiber reinforced concrete beams in combined action with conventional reinforcement", SynerCrete'18: Interdisciplinary Approaches for Cement-Based Materials and Structural Concrete: Synergizing Expertise and Bridging Scales of Space and Time, Madeira Island, Portugal, October. 
  14. EN BS 146151 (2007),Test Method for Metallic Fibre Concrete-Measuring the Flexural Tensile Strength (Limit of Proportionality (LOP), Residual), British Standards Institution, London, UK. 
  15. Cervenka, V., Jendele, L. and Cervenka, J. (2016), ATENA Program Documentation. Part 1. Theory, Cervenka Consulting, Prague, Czech Republic. 
  16. Chalioris, C.E. and Karayannis, C.G. (2009), "Effectiveness of the use of steel fibres on the torsional behaviour of flanged concrete beams", Cement Concrete Compos., 31(5), 331-341. https://doi.org/10.1016/j.cemconcomp.2009.02.007. 
  17. Cifuentes, H., Garcia, F., Maeso, O. and Medina, F. (2013), "Influence of the properties of polypropylene fibres on the fracture behaviour of low-, normal-and high-strength FRC", Constr. Build. Mater., 45, 130-137. https://doi.org/10.1016/j.conbuildmat.2013.03.098. 
  18. Feo, L. (2006), Guide for the Design and Construction of Fiber-Reinforced Concrete Structures, CNR - Advisory Committee on Technical Recommendations for Construction, Rome, Italy. 
  19. Dadmand, B., Pourbaba, M., Sadaghian, H. and Mirmiran, A. (2020a), "Effectiveness of steel fibers in ultra-high-performance fiber-reinforced concrete construction", Adv. Concrete Constr., 10(3), 195-209. https://doi.org/10.12989/acc.2020.10.3.195. 
  20. Dadmand, B., Pourbaba, M., Sadaghian, H. and Mirmiran, A. (2020b), "Experimental & numerical investigation of mechanical properties in steel fiber-reinforced UHPC", Comput. Concrete, 26(5), 451-465. https://doi.org/10.12989/cac.2020.26.5.451. 
  21. Dadmand, B., Sadaghian, H., Khalilzadehtabrizi, S., Pourbaba, M., Shirdel, M. and Mirmiran, A. (2023), "Studying the compressive, tensile and flexural properties of binary and ternary fiber-reinforced UHPC using experimental, numerical and multi-target digital image correlation methods", Case Stud. Constr. Mater., 18, e01865. https://doi.org/10.1016/j.cscm.2023.e01865. 
  22. Ding, Y. (2011), "Investigations into the relationship between deflection and crack mouth opening displacement of SFRC beam", Constr. Build. Mater., 25(5), 2432-2440. https://doi.org/10.1016/j.conbuildmat.2010.11.055. 
  23. Di Prisco, M., Plizzari, G. and Vandewalle, L. (2009), "Fibre reinforced concrete: New design perspectives", Mater. Struct., 42(9), 1261-1281. https://doi.org/10.1617/s11527-009-9529-4. 
  24. EN B934-2 (2009), Admixtures for Concrete, Mortar and GroutPart 2: Concrete Admixtures, Definitions, Requirements, Conformity, Marking and Labelling, British Standards Institution, London, UK. 
  25. Frazao, C., Barros, J., Bogas, J. A., Garcia-Cortes, V. and Valente, T. (2022), "Technical and environmental potentialities of recycled steel fiber reinforced concrete for structural applications", J. Build. Eng., 45, 103579. https://doi.org/10.1016/j.jobe.2021.103579. 
  26. Facconi, L., Minelli, F., Ceresa, P. and Plizzari, G. (2021), "Steel fibers for replacing minimum reinforcement in beams under torsion", Mater. Struct., 54(1), 1-18. https://doi.org/10.1617/s11527-021-01615-y. 
  27. Figueiredo, T.C.S., Curosu, I., Gonzales, G.L., Hering, M., de Andrade Silva, F., Curbach, M. and Mechtcherine, V. (2021), "Mechanical behavior of strain-hardening cement-based composites (SHCC) subjected to torsional loading and to combined torsional and axial loading", Mater. Des., 198, 109371. https://doi.org/10.1016/j.matdes.2020.109371. 
  28. Golpasand, G.B., Farzam, M. and Shishvan, S.S. (2020), "Behavior of recycled steel fiber reinforced concrete under uniaxial cyclic compression and biaxial tests", Constr. Build. Mater., 263, 120664. https://doi.org/10.1016/j.conbuildmat.2020.120664. 
  29. Jeng, C.H. and Chao, M. (2015), "Unified rational formula for pre-cracking torsional stiffness of solid and hollow reinforced concrete members", Eng. Struct., 99, 92-107. https://doi.org/10.1016/j.engstruct.2015.04.038. 
  30. Hamdi, A., Abdelaziz, G. and Farhan, K.Z. (2021), "Scope of reusing waste shredded tires in concrete and cementitious composite materials: A review", J. Build. Eng., 35, 102014. https://doi.org/10.1016/j.jobe.2020.102014. 
  31. Hu, H., Papastergiou, P., Angelakopoulos, H., Guadagnini, M. and Pilakoutas, K. (2017), "Flexural performance of steel fibre reinforced concrete with manufactured and recycled tyre steel fibres", Construction Materials for Sustainable Future, University of Zagreb, Faculty of Civil Engineering, Zagreb, Croatia. 
  32. Ibraheem, O.F. and Mukhlif, O.A. (2021), "Torsional behavior of reinforced concrete plates under pure torsion", Comput. Concrete, 28(3), 311-319. https://doi.org/10.12989/cac.2021.28.3.311. 
  33. Kandekar, S.B. and Talikoti, R.S. (2020), "Torsional behaviour of reinforced concrete beams retrofitted with aramid fiber", Adv. Concrete Constr., 9(1), 1-7. https://doi.org/10.12989/acc.2020.9.1.001. 
  34. Leone, M., Centonze, G., Colonna, D., Micelli, F. and Aiello, M.A. (2018), "Fiber-reinforced concrete with low content of recycled steel fiber: Shear behavior", Constr. Build. Mater., 161, 141-155. https://doi.org/10.1016/j.conbuildmat.2017.11.101. 
  35. Liew, K.M. and Akbar, A. (2020), "The recent progress of recycled steel fiber reinforced concrete", Constr. Build. Mater., 232, 117232. https://doi.org/10.1016/j.conbuildmat.2019.117232. 
  36. Martinelli, E., Caggiano, A. and Xargay, H. (2015), "An experimental study on the post-cracking behaviour of hybrid industrial/recycled steel fibre-reinforced concrete", Constr. Build. Mater., 94, 290-298. https://doi.org/10.1016/j.conbuildmat.2015.07.007. 
  37. Mohajerani, A., Burnett, L., Smith, J.V., Markovski, S., Rodwell, G., Rahman, M.T., Kurmus, H., Mirzababaei, M., Arulrajah, A., Horpibulsuk, S. and Maghool, F. (2020), "Recycling waste rubber tyres in construction materials and associated environmental considerations: A review", Resour. Conserv. Recycl., 155, 104679. https://doi.org/10.1016/j.resconrec.2020.104679. 
  38. Pilakoutas, K., Neocleous, K. and Tlemat, H. (2004), "Reuse of tyre steel fibres as concrete reinforcement", Proc. Inst. Civil Eng. Eng. Sustainab., 157(3), 131-138. https://doi.org/10.1680/ensu.2004.157.3.131. 
  39. Rahal, K.N. (2021), "A unified approach to shear and torsion in reinforced concrete", Struct. Eng. Mech., 77(5), 691-703. https://doi.org/10.12989/sem.2021.77.5.691. 
  40. RILEM, T.C. (1994), "RILEM recommendations for the testing and use of constructions materials", RC, 6, 218-220.  https://doi.org/10.1201/9781482271362
  41. Sadaghian, H., Pourbaba, M., Andabili, S.Z. and Mirmiran, A. (2021), "Experimental and numerical study of flexural properties in UHPFRC beams with and without an initial notch", Constr. Build. Mater., 268, 121196. https://doi.org/10.1016/j.conbuildmat.2020.121196. 
  42. Thomas, B.S., Gupta, R.C. and Panicker, V.J. (2016), "Recycling of waste tire rubber as aggregate in concrete: durability-related performance", J. Clean. Prod., 112, 504-513. https://doi.org/10.1016/j.jclepro.2015.08.046. 
  43. Vandewalle, L., Nemegeer, D., Balazs, L., Barr, B., Barros, J., Bartos, P., ... and Walraven, J. (2003), "RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete'-sigma-epsilon-design method-Final Recommendation", Mater. Struct., 36(262), 560-567. https://doi.org/10.1617/14007. 
  44. Zamanzadeh, Z., Lourenco, L. and Barros, J. (2015), "Recycled steel fibre reinforced concrete failing in bending and in shear", Constr. Build. Mater., 85, 195-207. https://doi.org/10.1016/j.conbuildmat.2015.03.070.