• Title/Summary/Keyword: Recycled powder

Search Result 297, Processing Time 0.022 seconds

Quality of High Volume Blast Furnace Slag Mortar Depending on Desulfurization Gypsum Treating Methods and Fine Aggregate Type (탈황석고의 가공법 및 잔골재종류 변화에 따른 고로슬래그 미분말 다량 치환 모르타르의 품질 특성)

  • Han, Cheon-Goo;Lee, Dong-Yun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.157-164
    • /
    • 2016
  • In this research, based on the condition of using desulfurization gypsum(FGD) as a stimulator for high-volume blast furnace slag cement mortar, sieving and heating process methods of removing activated carbon in FGD were compared with the non-processed FGD and recycled and natural fine aggregates were compared for suitable aggregate to be used. According to the result of experiment, sieving with 0.3mm was more efficient than $500^{\circ}C$ heating for processing the FGD, and recycled fine aggregate showed more favorable result than natural fine aggregate at the FGD content was 5 to 10%. On the other hand, the mortar mixture including recycled fine aggregate had a high drying shrinkage, and absorption ratio, and thus specific limitations on applying recycled fine aggregate should be required.

Application of Waste Concrete Powder as Silica Powder of Cement Extruding Panel (시멘트 압출패널의 규사분말 대체재로서 폐콘크리트 미립분의 활용)

  • Kim, Jin-Man;Kim, Kee-Seok;La, Jung-Min;Choi, Duck-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.88-94
    • /
    • 2011
  • To make recycling aggregate, quantity of fine particles increase due to multi-crushing. Though this particles were mixed with recycling aggregate, those have to be disparted from aggregate in the high quality recycling aggregate, because of the cause of low quality. Considering reactivity, fine particles is better than coarse one. Therefore, it needs to develop suitable usage. We try to make cement extruding material by using the fine particles from concrete recycling, as a silicious replacement. Test results are as follows ; 1) Waste concrete powder has major ingredients such as $SiO_2$ and CaO, its density is $2.45g/cm^3$ being similar to silica powder, its diameter is range 13 to $141{\mu}m$. 2) Considering to strength properties according to particle size, specimen was made using small particles is higher strength than large one. 3) Despite of exception in the autoclaved curing, when the replacement of waste fine particle increase, strength of extruding panel shows almost same level.

  • PDF

The Improvement of Properties of Recycled aggregates using Concrete Waste by Pre-heating Method. (예비가열법에 의한 폐콘크리트 재생골재의 물성개선)

  • 최현수;김효열;최봉철;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.73.2-79
    • /
    • 2003
  • The purpose of this study is to provide the basic data on the optimum method for interfacial separation for an effective recycle of concrete waste by using the thermal properties of concrete. Therefore, this study is proceeded by dividing the interface of concrete into cement paste and fine aggregates or mortar and coarse aggregate, considering the aspect of recycled cement and aggregate as the recycling use of concrete waste. As results of the experiment, in case of recycle cement, the interfacial separation is easily appeared, but it is shown that the mixed amount of powder included in fine aggregate doesn't greatly decrease. But, in case of recycle coarse aggregate, the effect of interfacial separation by preliminary heating is predominant. Especially, the bonding rate of mortar is the lowest when it is heated 5 times for 120 minutes at $300^{\circ}C$. Hence, it is considered that it will be an excellent effect of quality control when the results of this study is applied to a manufacturing system of recycle coarse aggregate which is about to put into practical use.

  • PDF

Experimental and numerical studies on flexural behavior of high strength concrete beams containing waste glass

  • Haido, James H.;Zainalabdeen, Marwa A.;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.239-253
    • /
    • 2021
  • The behavior of concrete containing waste glass as a replacement of cement or aggregate was studied previously in the most of researches, but the present investigation focuses on the recycling of waste glass powder as a substitute for silica fume in high strength concrete (HSC). This endeavor deals with the efficiency of using waste glass powder, as an alternative for silica fume, in the flexural capacity of HSC beam. Thirteen members with dimensions of 0.3 m width, 0.15 m depth and 0.9 m span length were utilized in this work. A comparison study was performed considering HSC members and hybrid beams fabricated by HSC and conventional normal concrete (CC). In addition to the experiments on the influence of glass powder on flexural behavior, numerical analysis was implemented using nonlinear finite element approach to simulate the structural performance of the beams. Same constitutive relationships were selected to model the behavior of HSC with waste glass powder or silica fume to show the matching between the modeling outputs for beams made with these powders. The results showed that the loading capacity and ductility index of the HSC beams with waste glass powder demonstrated enhancing ultimate load and ductility compared with those of HSC specimens with silica fume. The study deduced that the recycled waste glass powder is a good alternative to the pozzolanic powder of silica fume.

The Properties of Concrete containing Waste-glass Powder (혼화재로서 폐유리 미분말을 사용한 콘크리트의 특성 평가)

  • Choi, Sung-Woo;Ryu, Deug-Hyun;Kim, Jun-Hyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.222-223
    • /
    • 2017
  • In the automotive industry, such as scrap metal and plastic scrap process is being recycled. Although the glass beads are used as road paving or other additives and processing crushing, recycling is known that there are limits. The utilization of waste glass was evaluated as a concrete admixture by using powder characteristics and chemical composition of the glass. As a result of using waste-glass powder as an admixture, it is difficult to expect the pozzolanic effect, but it is found that it can increase the fluidity of concrete and ensure the durability performance in the appropriate amount range.

  • PDF

A Study on the Quality Properties of Exposed High Fluidity Concrete using Fly Ash and Limestone Powder (플라이애시 및 석회석 미분말을 사용한 고유동 노출 콘크리트의 품질특성에 관한 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Kim, Ji-Hoon;Kim, Kyung-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.67-75
    • /
    • 2013
  • Recently, the interest is increasing about the exposed concrete, accordingly, exposed concrete is expanding the use. However, concrete structures is difficult to apply the general concrete for exposed concrete, due to complex section and compact reinforcement, increasingly. Therefore, in this paper, for application of high fluidity concrete as exposed concrete, exposed high fluidity concrete using fly ash and lime stone powder was manufactured and observed quality property(fluidity properties, mechanical properties and Surface Properties) of exposed high fluidity concrete. The experiments are based on the OPC and LSP10, was evaluated Impact on the quality of concrete according to mixing ratio of FA(0, 10, 15 and 20). As a result, fluidity properties, mechanical properties and Surface Properties of exposed high fluidity concrete were satisfied to requirement conditions, fluidity and surface finishability was improved depending on mix of fly ash and limestone powder. Through this, we utilize of basic research data for development of high fluidity concrete for exposed concrete.

Effect on Ferronickel Slag Powder in ASR (페로니켈 슬래그 미분말이 ASR에 미치는 영향)

  • Kim, Min-Seok;Seo, Woo-Ram;Rhee, Suk-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • Most of the existing research on ferronickel slag has focused on its potential as aggregate and fine aggregate, this study was conducted focusing on the potential of ferronickel slag powder as a concrete admixture. For concrete, which fly ash, blast furnace slag, and FSP were mixed with each 10 % type the reactivity was evaluated by applying ASTM C 1260 of the United States. As a result, compared with the control group, the expansion rate of fly ash decreased by 8.43 % and that of fine blast furnace slag powder decreased by 14.46 %, while the expansion rate of ferronickel slag decreased by 49.40 %. it was confirmed that ferronickel slag can sufficiently be replaced existing supplementary cementitious admixtures such as fly ash and blast furnace slag in terms of suppressing the reactivity of aggregates. However as a result of SEM analysis, ettringites were generated, and additional research about how it affects concrete is needed.

An Experimental Study on Engineering Properties of Self-healing Mortar according to PCC(Powder Compacted Capsule) Size and Mixing Ratio (PCC(Powder Compacted Capsule) 크기 및 혼입율에 따른 자기치유 모르타르의 공학적 특성에 관한 실험적 연구)

  • Jae-In, Lee;Chae-Young, Kim;Se-Jin, Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.514-522
    • /
    • 2022
  • In this study, as part of a study to improve the self-healing performance of concrete structures by applying self-healing capsules made of cementitious materials to cement composite materials, the engineering characteristics of mortars according to PCC(Powder Compacted Capsule) size and mixing ratio were compared and analyzed. For this, fluidity, compressive strength, reload test, carbonation, ultrasonic velocity, and water permeability characteristics were measured according to PCC size and mixing ratio of mortar. As a result of the measurement, the fluidity and compressive strength increased as the mixing ratio of PCC increased, and in the case of the load reload test, the healing ratio increased as the mixing ratio of PCC increased in the 03PC formulation. In the case of water permeability test, it was found that when PCC was used, the reduction ratio of water flow was up to 35 % higher than that of Plain, and when PCC with a size of 0.3 to 0.6 mm was mixed with 15 %, it was found to be effective in improving the crack healing ratio of the mortar.