• Title/Summary/Keyword: Recycled Sand

Search Result 173, Processing Time 0.021 seconds

Preliminary Study on Development of High Strength Cement Composites at 2,000kg/㎥ of Specific Weight (단위중량 2,000kg/㎥급 고강도 시멘트 복합체 개발을 위한 기초연구)

  • Jeong, Yeon-Ung;Lim, Gwi-Hwan;Kang, Yong-Hak;Jung, Sang-hwa;Kim, Joo-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.562-570
    • /
    • 2020
  • This study explores manufacturing technology and basic properties of high strength cement composites at 2,000kg/㎥ of specific weight. It is suggested that lightweight-high strength cement composites can be produced by substituting silica sand in ulta-high performance concrete mixture with lightweight materials such as solid bubbles and lightweight fine aggregates. The 28-day compressive strengths of cement composites with solid bubbles were from 116MPa to 141MPa at below 2.0g/㎤ of unit density while the cement composites with lightweight aggregates possessed lower compressive strength and higher unit density. The specific weight calculated from mixture proportions did not have significant difference with unit density of hardened cement composites, indicating that unit density of hardened cement composites can be estimated from the specific weight in mixture proportions.

A Study on the Mechanical Properties of Interfacial Transition Zone (ITZ) of Lightweight High Strength Concrete Via Nanoindentation (나노 인덴테이션을 통한 경량 고강도 콘크리트 Interfacial Transition Zone (ITZ)의 역학적 특성에 관한 연구)

  • Im, Su-Min;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.537-544
    • /
    • 2020
  • The interfacial transition zone(ITZ) which is the boundary layer between cement composites and aggregates is considered to be the region of gradual transition, heterogeneous, and the weakest part of concrete. For the development of lightweight high strength concrete, it is essential to evaluate the mechanical properties of ITZ between high strength concrete with low water-binder ratio and lightweight aggregates. However, the mechanical properties of ITZ are not well established due to its high porosity and complex structure. Furthermore, the properties of ITZ in concrete using lightweight aggregates are dominated by more various variations (e.g. water-binder ratio, water absorption capacity of aggregate, curing conditions) than normal-weight aggregate concrete. This study aims to elucidate the mechanical properties of ITZ in lightweight high-strength cement composites according to the types of aggregates and the aggregate sizes. Nanoindentation analysis was used to evaluate the elastic modulus of ITZ between high strength cement composites with the water-binder ratio of 0.2 and normal sand, lightweight aggregate with different aggregate siz es of 2mm and 5mm in this study.

Investigation on the Characteristics of Interfacial Transition Zone (ITZ) of High-Strength Cement Mortar Incorporating Graphene Oxide (그래핀 옥사이드 혼입 고강도 시멘트 모르타르의 Interfacial Transition Zone (ITZ) 특성에 관한 연구)

  • Im, Su-Min;Cho, Seong-Min;Liu, Jun-Xing;Lim, Seungmin;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.343-350
    • /
    • 2022
  • In recent years, nanomaterials, such as nano-silica, carbon nanotubes, and graphene oxide (GO), have been suggested to improve the properties of the interfacial transition zone (ITZ) between aggregates and cement pastes, which has most adversely affected the strength of quasi-brittle concrete. Among the nanomaterials, GO with superior dispersibility has been reported to be effective in improving the properties of ITZ of normal-strength concrete by forming interfacial chemical bonds with Ca2+ ions abundant in ITZ. In this study, the effect of GO on the properties of ITZ in the high-strength mortar was elucidated by calculating the change in hydration heat release, ITZ thickness, and the porosity around ISO sand, which was obtained with isothermal calorimetry tests and scanning electron microscope image analysis, respectively.

Evaluation of Properties of Mortar and Concrete using Wood Chip Cogeneration Plant Flooring as Fine Aggregate (목재칩 열병합 발전소 바닥재를 잔골재로 활용한 모르타르 및 콘크리트 특성 평가)

  • Kang, Suk-Pyo;Hong, Seong-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.327-334
    • /
    • 2022
  • In this study, in order to evaluate the characteristics of mortar and concrete using wood chip cogeneration plant flooring as fine aggregate, mortar characteristics according to wood chip aggregate replacement rate and water-cement ratio as a substitute for crushed sand, and concrete characteristics according to wood chip aggregate replacement rate were compared and evaluated. The cement mortar flow according to the wood chip aggregate replacement rate showed a tendency to increase as the wood chip aggregate replacement rate increased, and the compressive strength and flexural strength increased as the wood chip aggregate replacement rate increased. The slump and air content of concrete increased as the aggregate replacement rate increased, and the compressive strength and tensile splitting strength of concrete tended to increase as the wood chip aggregate replacement rate increased. Accordingly, the possibility of using the flooring by the cogeneration plant as a fine aggregate for concrete was confirmed.

Evaluation of Properties and Stability to use Floor Materials for Cogeneration Power Plant as Fine Aggregates for Concrete (열병합 발전소 바닥재를 콘크리트용 잔골재로 활용하기 위한 기초 물성 및 안정성 평가)

  • Kang, Suk-Pyo;Hong, Seong-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.321-326
    • /
    • 2022
  • In this study, cogeneration power plants that use biomass as a raw material to convert them into energy have recently received a lot of attention worldwide and are gradually increasing in South Korea. Therefore, in order to confirm the possibility of using the generated floor material as a fine aggregate for concrete, properties and stability evaluation experiments were performed. Compared to standard sand, the compressive strength of wood chip aggregate was improved by 11 % to 111 %, the length change rate was 89 %, and the waste processing test results met all criteria for hazardous substances. All of these are satisfied, and it is judged that the floor materials by the cogeneration power plant can be used as a fine aggregate for concrete.

Effect of Induction of Electromagnetic Field by Partitioned Coils on Fracture Energy of Steel Fiber Reinforced Mortar (분할된 코일을 이용한 전자기장 유도가 강섬유보강몰탈의 파괴에너지에 미치는 영향)

  • Moon, Do-Young;Mukharromah, Nur Indah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.219-226
    • /
    • 2022
  • In this experimental study, the effect of continuously changing the position of electromagnetic force using several coils and a relay switch on fracture energy was investigated. Normal mortar and steel slag mortar specimens in which 50 % and 100 % of sand was replaced with steel slag were cast and exposed to electromagnetic field. The electric field was induced by one coil without a relay switch as an existing method and by partitioning the coil and continuously changing the position using a relay switch. The fracture energy was calculated from the load-vertical displacement curve obtained from the experiment and compared with each other. As a result of the experiment, it was confirmed that the method of partitioning the coil and changing the position of electromagnetic force by using a relay switch is effective in increasing the fracture energy even if the same amount of power is used.

Performances of Prepacked-Type Thermal Conductive Backfills Incorporating Byproduct Powders and Aggregates (부산물 분체 및 굵은 골재를 활용한 프리팩트형 열전도성 되메움재의 성능)

  • Sang-Min Jeon;Young-Sang Kim;Ba-Huu Dinh;Jin-Gyu Han;Yong-Sun Ryu;Hyeong-Ki Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.169-176
    • /
    • 2023
  • This study aims to develop a thermally conductive backfill by applying the prepacked concrete concept, in which a coarse aggregate with relatively high thermal conductivity was first filled and then the voild filled with grout. Backfill with improved thermal conductivity can increase the heat exchange efficiency of underground heat exchangers or underground transmission facilities. The backfills was prepared by using crushed concrete as the coarse aggregate, fly ash-based grout, and a small amount of cement for solidification. The results of this study showed that the fly ash-cement-sand-based grout with a flow of at least 450 mm accor ding to ASTM D 6103 could fill the void of pr epactked coar se aggr egates with a maximum size of 25 mm. The thermal conductivity of the backfil with coarse aggregate was over 1.7 W/m·K, which was higher than that of grout-type backfills.

A Study on the Quality Characteristic of Mortar Using Lightweight Aggregate with Waste PET Bottle (폐 PET 병을 이용한 경량모르터의 품질특성에 관한 연구)

  • Choi Yun-Wang
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.16-22
    • /
    • 2003
  • Lightweight aggregate for concrete was manufactured from recycling the waste PET bottles (PET Bottle Lightweight Aggregate, LAPET). The qualities of LAPET and its mortar were investigated. Specific gravity and unit weight of LAPET was very low in comparison with river sand like as 1.39, 844 kg/㎥ respectively. In addition, compressive strength of concrete significantly decreased because of specific gravity of aggregate decreased with increases in containing ratio. When LAPET was contained to 25% and 50% of river sand, compressive strength of concrete at 28 days was indicated more 30MPa. Most of LAPET was generally showed to round shape and fluidity of mortar increased significantly due to sleeking the surface texture of LAPET. On the other hand, capillary absorption of mortar with LAPET was greatly increased in comparison with that of mortar without LAPET because of LAPET was composed of singular gradation. Absorption of LAPET was 0% because the interior structure of LAPET consists of PET like as organic high polymer. Therefore the fault of normal lightweight aggregate, absorption, will be improved. It could expect several advantages that the pollution of environment will be previously prevent and the waste resources could be recycled if LAPET is reused as aggregate for Lightweight concrete.

Study on the Recycling of Waste Soil from Constructed Site - Focused on Agricultural Planting Soil - (순환토사 재활용에 관한 연구 - 농업성토용 중심으로 -)

  • Kim, Jae-Hyung;Park, Je-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.16-21
    • /
    • 2019
  • This study has its aim to judge both applicability and suitability of recycling of waste soil for the use of farmland amelioration and low-lying farmland reclamation through growth and development experiment and component analysis. As results of physical characteristic evaluation on recycling of waste soil, the classification based on unified soil classification system has investigated as SW and SP affiliation and soil classification has appeared to be a loamy sand. As results of chemical component analysis, pH has appeared to be 7.0~8.4 which is relatively higher than general soil, however, heavy metal has investigated within the 1 region's standard value of soil pollution standards. As results of germination experiment, when using it by mixing recycling soil less than 75%, there is no significant influence on germination, and in the growth and development experiment, when using horticultural bed soil which is mixed with less than 40% of recycling of waste soil, it has confirmed that there is no significance difference with general soil. In case of farmland, the growth disorder of recycling of waste soil rate no more than 40% has shown that it has relatively small influences, and in case of using it by mixing with agricultural soil, it has evaluated to require concrete review of factors which may restrict growth condition including nutrition and pH.

Recycling of Chilled Converter Slag as Aggregate in Cement Mortar (급랭 진로슬래그 모르타르 골재 재활용 특성)

  • Kim, Tae Heui;Park, Kyung Bong
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.238-243
    • /
    • 2006
  • The aggregate properties of chilled converter slag reformed by atomizing liquid converter slag were investigated. The properties of mortars with various replacement of standard sand by chilled converter slag as recycled fine aggregates were investigated. The particle shape of chilled converter slag by atomizing was a sphere with an open cavity which is enclosed with two layers like a bored coconut. Specific gravity, unit weight and fineness modulus increased with increasing the replacement, and solid content had the maximum at the replacement of 75% and water absorption rate had the minimum at the replacement. The hardened mortars with higher replacements have the higher specific gravity and the denser texture.

  • PDF