• Title/Summary/Keyword: Recycled Sand

Search Result 173, Processing Time 0.024 seconds

Application of Recycled Aggregate in Job site as Anti-freezing and Lean Concrete Base Materials (현장파쇄 재생골재의 동상방지층 및 빈배합 콘크리트 기층 시험시공연구)

  • Kim, Jin-Cheol;Shim, Jae-Won;Cho, Kyou-Sung;Choi, Go-Il
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.25-33
    • /
    • 2004
  • The waste concrete produced by the process of the highway construction and management, has been crushed in-situ, and the waste aggregate has been experimentally used for anti-freezing layer and lean concrete. After testing the bearing capacity on anti-freezing layer, it was found that when the waste aggregates mixed with natural sand would be within the required gradations, the layer meets the requirements of limitation and the percentage to passing 2$\sim$20mm sieve increased by 5$\sim$13% because the flimsy mortars on aggregate were re-crushed by vibrated-roller compactor. The compressive strength of lean concrete using recycled aggregate was 71$\sim$85% of the natural coarce aggregate made, but nevertheless the recycled aggregates are applicable to the lean concrete because they largely exceeded the required strength, $57.5kgf/cm^2$.

  • PDF

Study on Rheological Properties of Mortar for the Application of 3D Printing Method (3D 프린팅 공법 적용을 위한 모르타르 구성성분 변화에 따른 레올로지 특성 연구)

  • Lee, Hojae;Kim, Won-Woo;Moon, Jae-Heum
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.16-24
    • /
    • 2018
  • In this study, an experiment was conducted to analyze mortar based rheology for 3D printing method application. The tendency of rheological properties due to the change of W/B, binder type, replacement ratio, and super plasticizer which have a great influence on the flow characteristics of concrete was experimentally analyzed. Experiments were carried out by dividing into paste and mortar. In the paste experiment, rheology was analyzed by setting W/B, binder type, replacement ratio, and super plasticizer dosage as main variables. In the mortar experiment, the rheological properties of W/B and sand ratio were analyzed. As a result, as the W/B was increased, the viscosity decreased and the FA ratio to replace FA increased and the viscosity increased. In order to increase the fluidity, substitution of only 5% of SF reduces the shear stress and the viscosity is reduced by about 83%. Mortar rheological evaluation shows that there is a critical section where a large change occurs in the W/B 30 to 40% section. Also, in the same W/B, it is analyzed that there is a critical section where the shear stress increases more than twice in the sand ratio of 50~60%.

Durability and Strength of Dense Grate Permeable Concrete Using Silica sand and Flexible Alkyd Resin (유변성(油變性) 알키드 수지(樹脂)와 규사(硅砂)를 사용(使用)한 밀입도(密粒度) 투수(透水)콘크리트의 강도(强度) 및 내구특성(耐久特性))

  • Kim, In-Jung;Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.36-42
    • /
    • 2010
  • Researches on resources recycling in the field of construction have made an extensive progress such as recycled aggregate of waste concrete and recycling of asphalt. On the other hand, there are almost never researches on pavement method with used waste frying oil. In South Korea, 0.2 million ton used waste frying oil is discharged every year. It is guessed that about 0.1 million ton used waste frying oil can be collected. If used waste frying oil is recycled, it is expected that disuse cost will be reduced and water pollution of rivers will be prevented. Therefore, the purpose of the study was to evaluate on mechanical features (strength, water resistance, chemical resistance, abrasion resistance, freezing and thawing resistance and permeable coefficient) whether dense graded permeable concrete mixing silica sand with flexible alkyd resin manufactured by making ester reaction with collected used waste frying oil to make alkyd resin could be applied to road pavement for non-roadway. The results of the study were as follows. In flexural strength, it had 1.6 times as much as road design standard 4.5MPa. In water resistance, chemistry resistance and freezing and thawing resistance, they had lack of strength in early age. As age went by, they didn't have large changes. And curing temperature had phenomenon of increase in strength at rather low temperature than high temperature by glass transition temperature of resin. Therefore, considering workability, strength and durability when it was applied to road pavement, it was reasonable that the mixing ratio of flexible alkyd resin was 10~15% in comparison with silica sand weight.

Evaluation of Mechanical Properties and Alkali-Silica Reaction of High Strength Mortar Using Waste Glass Sand (폐유리 잔골재를 치환한 고강도 모르타르의 역학적 특성 및 알칼리-실리카 반응 평가)

  • Eu, Ha-Min;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Son, Min-Jae;Nam, Jeong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.528-536
    • /
    • 2020
  • In this study, high strength mortar and normal strength mortar using waste glass sand were evaluated. The main parameters studied were mechanical properties, alkali-silica reaction(ASR) and residual mechanical properties after ASR. As a result of this experiment, it was found that the increase in strength of the mortar has a limitation in improving the slip of the waste glass sand(GS), and rather, it causes a larger ASR. However, the possibility of improving the slip of GS was confirmed by the temporary increase of initial residal compressive and flexural strength of the mortar containing GS after the ASR. Therefore, to improve the slip of GS, the additional research is required, such as modification of the surface of GS and the incorporation of a binder which can increase the strength and makes matrix compact.

Surface Characteristics of Concrete According to Types of Formworks (거푸집 종류에 따른 콘크리트 표면 특성)

  • Park, Se-Eon;Choi, Jeong-Il;Lee, Bong-Kee;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.499-505
    • /
    • 2021
  • The purpose of this study is to investigate experimentally the physical/chemical properties of concrete surface according to types of formworks. Plywood formwork and coated plywood formwork were prepared. In addition, plywood formwork with sand paper was prepared to simulate deterioration of concrete or rough surface of concrete. Normal concrete was used in this study. The properties of concrete surface were investigated by visual inspection, scanning electron microscopy and energy-dispersive X-ray spectroscopy techniques, elemental mapping, 2D and 3D surface profile measurement, and zeta potential measurement. Test results showed that concrete in a coated formwork had smooth surface and concrete in the formwork with sand paper had rough surface. It was observed that properties of concrete surface depended on types of formworks. Furthermore, differences in surface roughness were significantly higher than those in chemical compositions and zeta potential.

Post-fire flexural behavior of functionally graded fiber-reinforced concrete containing rubber

  • Nematzadeh, Mahdi;Mousavi, Reza
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.417-435
    • /
    • 2021
  • The optimal distribution of steel fibers over different layers of concrete can be considered as an appropriate method in improving the structural performance and reducing the cost of fiber-reinforced concrete members. In addition, the use of waste tire rubber in concrete mixes, as one of the practical ways to address environmental problems, is highly significant. Thus, this study aimed to evaluate the flexural behavior of functionally graded steel fiber-reinforced concrete containing recycled tire crumb rubber, as a volume replacement of sand, after exposure to elevated temperatures. Little information is available in the literature regarding this subject. To achieve this goal, a set of 54 one-, two-, and three-layer concrete beam specimens with different fiber volume fractions (0, 0.25, 0.5, 1, and 1.25%), but the same overall fiber content, and different volume percentages of the waste tire rubber (0, 5, and 10%) were exposed to different temperatures (23, 300, and 600℃). Afterward, the parameters affecting the post-heating flexural performance of concrete, including flexural strength and stiffness, toughness, fracture energy, and load-deflection diagrams, along with the compressive strength and weight loss of concrete specimens, were evaluated. The results indicated that the flexural strength and stiffness of the three-layer concrete beams respectively increased by 10 and 7%, compared to the one-layer beam specimens with the same fiber content. However, the flexural performance of the two-layer beams was reduced relative to those with one layer and equal fiber content. Besides, the flexural strength, toughness, fracture energy, and stiffness were reduced by approximately 10% when a 10% of natural sand was replaced with tire rubber in the three-layer specimens compared to the corresponding beams without crumb rubber. Although the flexural properties of concrete specimens increased with increasing the temperature up to 300℃, these properties degraded significantly with elevating the temperature up to 600℃, leading to a sharp increase in the deflection at peak load.

Effect of Bottom Ash Aggregate Contents on Mechanical Properties of Concrete (콘크리트의 역학적 특성에 대한 바텀애시 골재 양의 영향)

  • Ahn, Tae-Ho;Yang, Keun-Hyeok;Ha, Jung-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.379-386
    • /
    • 2020
  • The present study examined the effect of bottom ash aggregate contents on the compressive strength gain and mechanical properties(modulus of elasticity and rupture and splitting tensile strength) of concrete. Main test parameters were water-to-cement ratio and bottom ash aggregate contents for replacement of natural sand. Test results showed that the 28-days compressive strength of concrete and mechanical properties normalized by the compressive strength tended to decrease with the increase in bottom ash fine aggregate content. When compared with fib 2010 model equations, bottom ash aggregate concrete exhibited the following performances: lower rates of compressive strength gain at early ages but greater rates at long-term ages; slightly higher measurements for modulus of elasticity and rupture; and lower measurements for splitting tensile strength.

A Study on the Engineering Property and Durability of Recycled Concrete with Replacement Ratio of Recycled Fine Aggregate and Fly-ash (재생잔골재 및 플라이애시 대체율에 따른 재생콘크리트의 공학적 특성 및 내구성능에 관한 연구)

  • Kim, Moo-Han;Kim, Gyu-Yong;Kim, Jae-Whan;Cho, Bong-Suk;Kim, Young-Sun;Moon, Hyung-Jae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.89-97
    • /
    • 2005
  • Recently, for the problem solution of demand and supply imbalance of fine aggregate due to the shortage of natural fine aggregate resource and the environment regulation on sea sand extraction in the construction field, the studies for the application of recycled fine aggregate using waste concrete are being progressed versatilely. On the other hand, the treatment of fly-ashes that of industrial by-product originated in the steam power plant is discussed by the continuous increasing of origination quantities. In the ease of using fly-ash, advantages are the improvement of workability, viscosity and long-time strength, and the reduction of hydration heat under the early ages, as the admixtures for concrete, but the studies for the application of fly-ash as recycled concrete admixtures are inadequacy. There fore, in this study, through investigating the properties of fresh, hardened and durability according to the replacement of recycled fine aggregate and fly-ash, it is intended to propose the fundamental data for structural application of recycled concrete using recycled fine aggregate and fly-ash. As the result of this study, they arc shown that the engineering properties and durability, in the case of replacement ratio 100% of recycled fine aggregate, arc similar to those of concrete using natural fine aggregate, so it is considered that recycled fine aggregate could be used as the fine aggregate for concrete. Also, the performances of recycled concrete are improved by replacing fly-ash.

  • PDF

Physical Properties of Dredged Sand Treated by Washing and Sorting Dredged Soil (하천준설토를 세척 선별한 준설모래의 물리적 특성)

  • Lee, Yun-Seong;Lee, Sang-Soo;Song, Ha-Young;Bae, Kee-Sun;Lee, Sung-Bok;Lee, Do-Heun
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • Most of the dredged sand generated from the sewage pipe maintenance project and the government's four-river project are disposed depending on abandonment and filling-up. This is caused by the lack of related recycling technology using dredged sand appropriately and high absorption rate and micro-particles of dredged sand producted from existing sand production system. Thus, this study carried out a quality assessment for the dredged sand produced through the optimum washing and sorting system supplementing problems of existing dredged sand production system as a part of research to examine performance of removing micro-particles and foreign substances. As a result of the assessment, the dredged sand produced through the cleaning and sorting system showed a wide quality improvement effect in absorption rate, 0.08 mm sieve pass amount, clay lump volume and organic impurity content, and it turned out to satisfy both the quality standards of this study, KS F 2573(recycled aggregate for concrete) and KS F 2526(aggregate for concrete) so it could be confirmed that it would be able to be used as an aggregate for concrete in the future.

Applicability of Recycled Soil Mixed with Bentonite-Polymer for Waste Landfill Liner (순환토사의 벤토나이트-폴리머 혼합비에 따른 매립지 차수재 적용성에 관한 연구)

  • Shin, Eun Chul;Lee, Hee Mun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.63-73
    • /
    • 2019
  • In this study, it was studied recycled soils with bentonite-polymer mixture in order to design economic landfill instead of clay liner. Recycled soil was used as SP, a sandy soil with 90.58% sand and 1.88% silt and clay. The recycled soils were mixed with 4%, 6%, and 8% bentonite by weight, and then compared with samples mixed with 2%, 3%, and 4% bentonite by weight in marine clay. Recycled soil satisfied the permeability criteria at 8%, and clay soil satisfied at 3%. In order to make a sample that satisfies the standard of the waste landfill, a permeability test was conducted by mixing 0.16%, 0.24%, and 0.28% of the polymer in a sample having 4% bentonite mixing ratio. The unconfined compression strength test was carried out at the same mixing ratio to confirm that the specification was satisfied. As the bentonite mixture ratio increased, the permeability coefficient and unconfined compression strength decreased. The strength in polymer mixing increased initially and then maintained a constant value. At 4% bentonite mixing ratio and 0.28% polymer mixing ratio, the coefficient of permeability was 1.0×10-7 cm/sec or less, and the unconfined compression strength was over 500 kPa. It was confirmed that it can be used as a mixed liner material of waste landfills.