• Title/Summary/Keyword: Recycled Lime Stone

Search Result 8, Processing Time 0.016 seconds

A Study on Pore Structure of High-Fluidity Concrete using Lime Stone Powder and Fly-ash (석회석 미분말 및 플라이 애시를 사용한 고유동 콘크리트의 공극구조에 관한 연구)

  • Choi, Yun-Wang;Hooton, R.D.;Eom, Joo-Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.118-125
    • /
    • 2011
  • The size and distribution of concrete void was one among the factor determining durability of concrete. Recently, there was a lot of researches related to the High-Fludity Concrete(HFC) with field applications. However, the research about the void structure having an effect on durability of concrete is insufficient. Therefore, in this research, Conventional Concrete(CC) and HFC using lime stone powder and fly-ash of 30 MPa range was manufactured and observed the void structure of CC and HFC. Experimental results showed that average pore diameter in the case of the 30 MPa range HFC was to be lower than CC and SEM analyzed result, HFC was firmer inner structure than CC.

  • PDF

Engineering Properties of High Strength Concrete Using Lime Stone Recycling Fine Aggregate (석회암 순환잔골재를 사용한 고강도 콘크리트의 공학적 특성)

  • Han, Cheon-Goo;Kim, Hyun-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.72-79
    • /
    • 2007
  • This study investigates the engineering properties of concrete incorporating lime stone crushed fine aggregate(Ls), which has been abandoned about 20% of total production due to the low purity. Test results showed that increase of Ls had favorable fluidity and slightly decreased air content. Bleeding capacity of all specimens was not appeared as those were high strength mixture proportion, but the specimens using more Ls accelerated initial and final setting. For the mechanical properties, specimens incorporating higher ratio of Ls, overall, resulted in increase of compressive strength, and exhibited very small inclined tendency in a dynamic elasticity modulus test In addition, for the durability properties, specimens incorporating higher Ls dramatically decreased a drying shrinkage and showed similar tendency in a frost & thaw test, as well as showing no more change in an accelerated neutralization test from the beginning. In conclusion, as it was confirmed in the experimental test, the high strength concrete applying Ls did not showed any problems in the aspects of engineering properties and mostly exhibited even more excellent quality than the specimens using natural fine aggregate.

  • PDF

A Development of Recycled Glass Powder using Asphalt Concrete Filler and Evaluation of Practical Use at the Field (아스콘 채움재용 폐유리 미분말 개발 및 현장 적용 평가)

  • Ryu, Deug-Hyun;Jeon, Jun-Young;Jo, Shin-Haeng;Jun, Soon-Je
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.113-116
    • /
    • 2007
  • This is a research for evaluated recycled glass powder to add asphalt concrete filler. To make a comparative study, Mechanical performance of lime stone and slag dust Mixtures was evaluated according to test procedure. Lab. performance tests included marshall stability, indirect tensile strength, resilient modulus and wheel tracking. Water resistance tests were evaluated by marshall strength ratio and tensile strength ratio. In conclusion, Results of mechanical performance showed that recycled glass powder mixtures were equivalent to conventional mixtures. Especially, result of tensile strength ratio tested recycled glass powder mixtures was superior to conventional mixtures.

  • PDF

The Effect of Combinations of Electric Arc Furnace Slag and Lime Stone aggregates on Engineering Properties of Ultra High Strength Concrete with 80MPa (전기로 산화슬래그 잔골재와 석회암 골재의 조합사용이 80MPa급 초고강도 콘크리트의 공학적 특성에 미치는 영향)

  • Han, Min-Cheol;Moon, Byeong-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.253-260
    • /
    • 2017
  • The aim of research is to investigate various physical properties of ultra high strength concrete of 80MPa class using a combination of limestone aggregate and electronic arc furnace oxidizing slag aggregate. For aggregate combinations, granite and limestone are used for coarse aggregate, granite and limestone are also used for fine aggregate. And also, limestone fine aggregate is replaced by electronic arc furnace oxidizing slag aggregate of 25% and 50%. Test results indicated that flowability and compressive strength increased when limestone fine aggregate was used compared to that using granite fine aggregate due to higher modulus of elasticity by limestone. Also substitution of electronic arc furnace oxidizing slag aggregate resulted in a decrease of compressive strength slightly. It is found that the use of electronic arc furnace oxidizing slag aggregate and limestone aggregate would be favorable for reducing the autogenous shrinkage by as much as 9~25%.

Raw Materials Composition of Recycled Cement from Waste Concrete Powder (폐콘크리트 미분말을 활용한 재생시멘트의 원료조합)

  • Kwon, Eun-Hee;Ahn, Jae-Cheol;Park, Dong-Cheon;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.61-62
    • /
    • 2012
  • This study is for analyzing possibility of utilizing as cement from waste concrete. The scrapped fine powder which contains a large amount of hydrate of cement can supercede lime stone, and greenhouse gas reductions are expected. However, Fine Aggregate powder efficient separation technology development is essential for that limestone substitution effect and reduce greenhouse gas emissions in order to facilitate through the recycling of the scrapped fine powders.

  • PDF

An Analysis on the Properties of Cement Mortar using Sewage Sludge Incineration Ash (하수슬러지 소각재를 이용한 시멘트 모르타르의 특성분석)

  • Ryu, Heon-Ki;Park, Jeong-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.55-62
    • /
    • 2010
  • This is an experimental research in order to judge the applicability of sewage sludge incineration ash having applied the mixing proportion needed to manufacture bricks and to do plaster work with addition of hwangtoh and slaked lime as a part of the methods for utilizing the wastes produced from sewage sludge incineration ash. Based on the results from experiment and analysis, it is judged that, in case of mixing proportion of 1:2 for the purpose of plastering and masonry work, the cement mortar produced by using a 10% addition ratio of sewage sludge incineration ash with mixture of hwangtoh covering all range of addition ratio, and also the cement mortar produced by using a 20% of sewage sludge incineration ash together with 0% and 10% addition ratio of hwangtoh, was possible to be applied to the practical use. In case of mixing proportion of 1:7 for manufacture of bricks and blocks, if such brick and block products are produced with 10% and 20% addition ratio of sewage sludge incineration ash having added aggregate fines or stone dust that has been actually used in brick and block manufacturing, it is judged that these bricks and blocks could be practically used in the job sites, although strength development is a little bit lower.

  • PDF

A Study on the Estimation of Greenhouse Gas Using Oyster Shell Recycling for Paper Filler

  • Park, Seung-Chel;Seo, Ran-Sug;Kim, Sung-Hu
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • This study has conducted greenhouse gas emission reduction test as using Oyster-shells originated PCC paper filler compare to non-Oyster shells used PCC. This examination was estimated and calculated in accordance with both IPCC (Intergovernmental Panel on Climate Change) and World Business Council for Sustainable Development (WBSCD). The greenhouse gas emission reduction estimation result indicates that, when oyster shells are recycled and used as paper filler, it reduces $27.97tCO_2\;per\;100\;ton$ of oyster shells. It is greenhouse gas emission $44.27tCO_2$ from PCC production changed to carbon emission reduction when replaced with oyster shell. LNG greenhouse gas emission $16.3tCO_2$ in relation to the pre-treatment with oyster shell per 100 ton is also reflected. As a result, it is assumed that roughly $0.2797tCO_2/oyster\;shell{\cdot}ton$.

A Study on the Quality Properties of Exposed High Fluidity Concrete using Fly Ash and Limestone Powder (플라이애시 및 석회석 미분말을 사용한 고유동 노출 콘크리트의 품질특성에 관한 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Kim, Ji-Hoon;Kim, Kyung-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.67-75
    • /
    • 2013
  • Recently, the interest is increasing about the exposed concrete, accordingly, exposed concrete is expanding the use. However, concrete structures is difficult to apply the general concrete for exposed concrete, due to complex section and compact reinforcement, increasingly. Therefore, in this paper, for application of high fluidity concrete as exposed concrete, exposed high fluidity concrete using fly ash and lime stone powder was manufactured and observed quality property(fluidity properties, mechanical properties and Surface Properties) of exposed high fluidity concrete. The experiments are based on the OPC and LSP10, was evaluated Impact on the quality of concrete according to mixing ratio of FA(0, 10, 15 and 20). As a result, fluidity properties, mechanical properties and Surface Properties of exposed high fluidity concrete were satisfied to requirement conditions, fluidity and surface finishability was improved depending on mix of fly ash and limestone powder. Through this, we utilize of basic research data for development of high fluidity concrete for exposed concrete.