• Title/Summary/Keyword: Recycled Coarse Aggregates

Search Result 135, Processing Time 0.029 seconds

Mechanical properties of concrete containing recycled materials

  • Solanki, Pranshoo;Dash, Bharat
    • Advances in concrete construction
    • /
    • v.4 no.3
    • /
    • pp.207-220
    • /
    • 2016
  • The objective of this study was to evaluate the influence of recycled materials, namely, shredded scrap tire (SST), reclaimed asphalt pavement (RAP) and class C fly ash (CFA) on compressive and tensile strength of concrete. Either SST or RAP was used as an aggregate replacement and class C fly ash (CFA) as Portland cement replacement for making concrete. A total of two types of SST and RAP, namely, chips and screenings were used for replacing coarse and fine aggregates, respectively. A total of 26 concrete mixes containing different replacement level of SST or RAP and CFA were designed. Using the mix designs, cylindrical specimens of concrete were prepared, cured in water tank, and tested for unconfined compressive strength (UCS) and indirect tensile strength (IDT) after 28 days. Experimental results showed aggregate substitution with SST decreased both UCS and IDT of concrete. On the contrary, replacement of aggregate with RAP improved UCS values. Specimens containing RAP chips resulted in concrete with higher IDT values as compared to corresponding specimens containing RAP screenings. Addition of 40% CFA was found to improve UCS values and degrade IDT values of SST containing specimens. Statistical analysis showed that IDT of SST and RAP can be estimated as approximately 13% and 12% of UCS, respectively.

Relationship between Carbonation Rate and Compressive Strength in Concrete with Unclear Local Aggregate Qualities (골재 지역 특성이 불분명한 콘크리트의 탄산화 속도 및 강도 상관성)

  • Jin-Won Nam;Hyeong-Ki Kim;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.3
    • /
    • pp.246-253
    • /
    • 2024
  • When concrete with slag powder or fly ash is under an accelerated carbonation test at early age, a very complicated carbonation behavior occurs since several reactions covering cement hydration, pozzolanic reaction, and carbonation reaction occu simultaneously. In particular, fine and coarse aggregates with poor quality were used, the trend with strength development and carbonation behavior was not clear. In this study, concrete samples with three design strength grade(24 MPa, 27 MPa, and 30 MPa) were manufactured with different aggregates site(A, B, and C). Compressive strength test were performed considering curing ages(7 and 28 days), and the accelerated carbonation tests were performed for 8 weeks for evaluating carbonation rate. The relationship between compressive strength and carbonation rate was analyzed considering mix properties and the aggregate site conditions. In addition, the minimum cover depth satisfying intended service life was obtained through carbonation design based on Domestic Design Code, and the necessities for improving design parameters (direction coefficient and effective water-binder ratio) were suggested.

Characterization of Concrete Composites with Mixed Plastic Waste Aggregates (복합 폐플라스틱 골재 치환 콘크리트의 기초 물성 평가)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.317-324
    • /
    • 2020
  • Plastic wastes generated from domestic waste are separated by mixed discharge with foreign substances, and the cost of the separation and screening process increases, so recycling is relatively low. In this study, as a fundamental study for recycling mixed plastic wastes generated from domestic waste into concrete aggregates, changes in concrete properties according to the plastic waste types and the substitution rate were evaluated experimentally. The mixed plastic waste aggregate(MPWA) was found to have a lower density and a higher absorption rate compared to the coarse aggregate with good particle size distribution. On the other hand, the single plastic waste aggregate(SPWA) was composed of particles of uniform size, and both the density and the absorption rate were lower than that of the fin e aggregate. It was found that the MPWA substitution concrete did not cause a material separation phenomenon due to a relatively good particle size distribution even with the largest amount of plastic waste substitution, and the amount of air flow increased little. The compressive strength and flexural strength of the PWA substitution concrete decreased as the amount of substitution of the PWA increased due to the low strength of the PWA, the suppression of the cement hydration reaction due to hydrophobicity, and the low adhesion between the PWA and the cement paste. It was found that the degree of deterioration in compressive strength and flexural strength of concrete substituted with MPWA having good particle size distribution was relatively small.

Use of Recycled Brick Masonry Aggregate (RBMA) and Recycled Brick Masonry Aggregate Concrete (RBMAC) in Sustainable Construction

  • Tara L. Cavalline;David C. Weggel;Dallas E. Schwerin
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.390-390
    • /
    • 2013
  • Use of recycled aggregates in portland cement concrete construction can offer benefits associated with both economy and sustainability. Testing performed to date indicates that RBMA can be used as a 100% replacement for conventional coarse aggregate in concrete that exhibits acceptable mechanical properties for use in structural and pavement elements, including satisfactory performance in some durability tests. RBMAC is currently not used in any type of construction in the United States. However, use of RBMAC could become a viable construction strategy as sustainable building practices become the norm. Rating systems such as LEED offer points for reuse of building materials (particularly on-site) and use of recycled materials. If renovations at an existing facility call for the demolition of existing brick masonry constructions, the rubble could be included as RBMA in new concrete pavement, sidewalks, or curb and gutter. Other potential uses for RBMAC could include those in the precast concrete industry, particularly in architectural precast concrete applications. In addition to providing acceptable strength and economy, the color of RBMA could be an attractive component of architectural precast concrete panels or other façade components. This paper explores the feasibility of use of RBMAC in several types of sustainable construction initiatives, based upon the findings of previous work with RBMAC produced from construction and demolition waste from a case study site. Guidance for obtaining and using RBMA is presented, along with a summary of material properties of RBMAC that will be useful to construction professionals.

  • PDF

The Fractural-Mechanical Properties and Durability of Lightweight Concrete Using the Synthetic Lightweight Aggregate (합성경량골재(SLA)를 사용한 경량콘크리트의 파괴, 역학적 특성 및 내구성)

  • Jo Byung-Wan;Park Seung-Kook;Park Jong-Bin;Daniel C. Jansen
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.19-25
    • /
    • 2005
  • Recycling of waste materials in the construction Industry is a useful method that can cope with an environment restriction of every country. In this study, synthetic lightweight aggregates are manufactured with recycled plastic and fly ash with 12 percent carbon. Nominal maximum-size aggregates of 9.5 mm were produced with fly ash contents of 0, 35, and $80\%$ by the total mass of the aggregate. An expanded clay lightweight aggregate and a normal-weight aggregate were used as comparison. Gradation, density, and absorption capacity are reported for the aggregates. Five batches of concrete were made with the different coarse aggregate types. Mechanical properties of the concrete were determined including density, compressive strength, elastic modulus, splitting tensile strength, fracture toughness, and fracture energy. Salt-scaling resistance, a concrete durability property, was also examined. Compressive and tensile strengths were lower for the synthetic aggregates; however, comparable fracture properties were obtained. Relatively low compressive modulus of elasticity was found for concretes with the synthetic lightweight aggregate, although high ductility was also obtained. As nv ash content of the synthetic lightweight aggregate increased, all properties of the concrete were improved. Excellent salt-scaling resistance was obtained with the synthetic lightweight aggregate containing 80 percent fly ash.

Influence of Low-Quality Aggregate on Engineering Properties of Concrete (동일배합 조건에서 저품질 골재가 콘크리트의 공학적 특성에 미치는 영향)

  • Min, Kyeong-Chul;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.187-194
    • /
    • 2016
  • In this research, the influence of low-quality aggregate on engineering properties of concrete was experimentally evaluated. From a series of experiment, the results can be summarized as follow: first, the low-quality aggregate in concrete mixture caused up to 83% of decreased slump. For air content, low-quality aggregate increased air content of concrete mixture. Especially, when sea sand was used, because of the narrow gradation with small size, the air content was significantly increased. The compressive strength of concrete mixtures with low-quality aggregates were decreased up to 29% while some cases showed slightly increased compressive strength at early age. Additionally, the concrete mixture mixed with the exploded debris as a coarse aggregate showed approximately 5 to 20% of decreased compressive strength comparing with high-quality of manufacturing rock. In summary, because of the decreased workability of concrete mixture mixed with low-quality aggregates such as exploded debris, clay, and sea sand, it is concerned that worse quality of the ready mixed concrete, produced with the extra water to compensate the decreased workability.

A Study on the Influence of the Number of Re-crushing with regard to the physical Properties of Recycled Coarse Aggregates (재생조골재의 물리적 특성에 미치는 재파쇄회수의 영향에 관한 연구)

  • Choe, Min-Su;Kim, Mu-Han;Namba, Atsushi;Abe, Michihiko
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.160-163
    • /
    • 1995
  • 본 硏究는 現在 일상적 있는 재생조골재를 죠오크러져(modified-jaw crusher)를 이 용하여 다시 1-3 파쇄를 행함으로써 재생골재의 품질이 어느정도 개량될 수 있는가를 실험 적으로 구명하여 재생골재의 실용화를 위한 하나의 방법을 제한하고자 하는 것이다. 실험결 과,재화파생 처리를 행하지 않은 경우의 재생근 골재의 흡수율은 5-7%정도이나 재파쇄를 함에 따라 흡수율은 현저하게 낮아져, 3차례의 재파쇄를 행한 경우 흡수율이 2% 이래로 나 타나 재생근골재의 품질을 학보하기 위하여는 재파쇄가 매우 유용한 방법임을 알 수 있었 다. 또한 흡수율의 본포도 처음에는 2개의 범주를 가지고 넓게 산포하게 되나 재파쇄가 진 행될수록 재생근골재중에 부착되어 있던 모르터분이 점차 떨어져 나감에 따라 품질의 산포 가 상당히 낮아지는 결과를 얻었다. 그러나 이와같은 재파쇄에는 많은 실용적 부담이 발생 하게 되므로 골재의 품질과 경제적효율을 고려하여 정적한 재파쇄회수가 결정되어야 할 것 으로 사료 된다.

  • PDF

The Effect of Combinations of Electric Arc Furnace Slag and Lime Stone aggregates on Engineering Properties of Ultra High Strength Concrete with 80MPa (전기로 산화슬래그 잔골재와 석회암 골재의 조합사용이 80MPa급 초고강도 콘크리트의 공학적 특성에 미치는 영향)

  • Han, Min-Cheol;Moon, Byeong-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.253-260
    • /
    • 2017
  • The aim of research is to investigate various physical properties of ultra high strength concrete of 80MPa class using a combination of limestone aggregate and electronic arc furnace oxidizing slag aggregate. For aggregate combinations, granite and limestone are used for coarse aggregate, granite and limestone are also used for fine aggregate. And also, limestone fine aggregate is replaced by electronic arc furnace oxidizing slag aggregate of 25% and 50%. Test results indicated that flowability and compressive strength increased when limestone fine aggregate was used compared to that using granite fine aggregate due to higher modulus of elasticity by limestone. Also substitution of electronic arc furnace oxidizing slag aggregate resulted in a decrease of compressive strength slightly. It is found that the use of electronic arc furnace oxidizing slag aggregate and limestone aggregate would be favorable for reducing the autogenous shrinkage by as much as 9~25%.

Analysis of Fundamental Properties of Concrete Using Mix of Coarse Aggregate With Formation Causes (성인이 다른 굵은 골재를 혼합사용한 콘크리트의 기초적 특성 분석)

  • Noh, Sang-Kyun;Kim, Young-Hee;Kim, Jeong-Bin;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • Recently, attempts of replacing some of natural aggregate with mix of low quality aggregate are carried out for stable supply of aggregate. However, low quality aggregate such as recycled aggregate produced during the disposal process of construction wastes and by-product aggregate produced by industrial activities has problem of failing to comply to KS Standards. Therefore, we have compared fundamental properties of concrete by using granite crushed aggregate, recycled aggregate, blast furnace and electric arc furnace slag aggregate for effective utilization of lacking aggregate resources. As the result, slump in case of mixed use of aggregate was increased 0~10% compared to single use. Therefore, it is judged to be economically advantageous as it can expect effects in unit quantity or reduction of SP agent. Compressive strength in case of mixed use of aggregate was increased 0~10% compared to single use as it filled internal crevice of concrete with continuous particle size distribution. Accordingly, if we utilize by satisfying standard particle scope through mix of aggregate with different cause of formation in proper ratio, it was possible to confirm utility of mixed aggregate with demonstration of effects of increases of fluidity and compressive strength of concrete.

Effects of Low-quality Aggregates in the Same Workability Conditions on the Engineering Properties of Concrete (저품질 골재가 동일 작업성 조건에서 콘크리트 공학적 특성에 미치는 영향)

  • Min, Kyeong-Chul;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.299-306
    • /
    • 2016
  • In this research, influence of low quality aggregate on engineering properties of concrete was evaluated experimentally. From the experiment, the fresh properties of slump and air content were controlled with unit water and AE dosage and all mixture were designed to have similar fresh properties of slump and air content with various quality of aggregate. Under this conditions, comparing with the mixture with high quality aggregate, the mixture with low quality aggregate showed the unit water and AE dosage were increased about 18 and 98%, respectively, because of poor grading and quantity of fines. For compressive strength, the low quality aggregate, specifically, exploded debris, clay sand, and sea sand contributed on decreasing compressive strength about 20~35%. Additionally, the concrete mixture including low quality fine and coarse aggregate showed adverse quality in not only compressive strength but also durability of freeze-thawing resistance, drying shrinkage, carbonation, and chloride ingression. Therefore, it is considered that for low quality aggregate, extra treatment processes such as washing or controlling gradation, and regulation to limit the use of low quality aggregate are needed.