• Title/Summary/Keyword: Recycled Coarse Aggregates

Search Result 135, Processing Time 0.026 seconds

Experimental Study on the Properties of Recycled Concrete using Recycled Coarse Aggregates and Steel Slag Fine Aggregates (재생 굵은골재와 제강슬래그 잔골재를 사용한 재생 콘크리트의 특성에 관한 실험적 연구)

  • Lee, Jaesung;Na, Okpin
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.63-71
    • /
    • 2015
  • The purpose of this study is to investigate the optimum replacement rate and material properties of eco-friendly recycled concrete using recycled coarse aggregates and rapid-chilled steel slag fine aggregates. The replacement rate of recycled coarse aggregates was increased from 30% to 50% of total volume of coarse aggregates and the rapid-chilled steel slag aggregates were substituted for 10% to 50% of total volume of fine aggregates. As a result, the increment of recycled coarse aggregates in concrete caused the reduction of the compressive strength. On the other hand, as increasing the replacement ratio of rapid chilled steel slag aggregates, the compressive strength was enhanced. Furthermore, the optimum use of rapid chilled steel slag aggregates was suggested up to 20~30% of fine aggregates and the use of it could be helpful to expand the replacement rate of recycled aggregates.

Characteristics of sustainable concrete incorporating recycled coarse aggregates and colloidal nano-silica

  • Mukharjee, Bibhuti Bhusan;Barai, Sudhirkumar V
    • Advances in concrete construction
    • /
    • v.3 no.3
    • /
    • pp.187-202
    • /
    • 2015
  • The present study addresses about the development of sustainable concrete utilizing recycled coarse aggregates manufactured form waste concrete and colloidal Nano-Silica. Experimental investigations are carried out to determine compressive and tensile strength of concrete mixes designed with recycled coarse aggregates and different percentages of Nano-Silica. Moreover, water absorption, density and volume voids of concrete mixes are also examined to ascertain the influence of Nano-Silica on behavior of recycled aggregate concrete. The outcomes of the research depict that properties of concrete mixes are significantly affected with the introduction of recycled coarse aggregates in place of the natural coarse aggregates. However, the study reveals that the depletion of behavior of recycled aggregate concrete could be restored with the incorporation of little amount (3%) of Nano-Silica.

Experimental Study on Bond Performance of RC Beams According to Absorption of Recycled Coarse Aggregates (순환 굵은 골재 흡수율에 따른 RC 보의 부착성능에 관한 실험적 연구)

  • Kim, Sang-Woo;Lee, Hyun-Ah;Jung, Chang-Kyo;Kim, Kil-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.100-107
    • /
    • 2010
  • This study evaluates the bond behavior of reinforced concrete (RC) beams using recycled coarse aggregates. A total of four specimens were cast and tested. The test parameter was the type of coarse aggregates, that is, natural and recycled coarse aggregates, and the absorption ratio of recycled coarse aggregate. The recycled coarse aggregates with absorption ratios of 3% and 6% were used in this test. The specimens were simply supported and were subjected to a concentrated load. A test method proposed by Ichinose was adopted to estimate effectively the bond properties of specimens. From the experimental results, it was found that there was no difference of bond characteristics according to the absorption ratio of recycled coarse aggregates.

Mechanical Properties of Concrete Using Recycled Coarse Aggregate from Nuclear Power Plant Simulated Concrete (원자력발전소 모의 콘크리트로부터 생산된 순환 굵은 골재 활용 콘크리트 역학적 특성)

  • Lee, Seong-Cheol;Shin, Kyung-Joon;Kim, Chang-Lak
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.167-174
    • /
    • 2020
  • Many researches have been conducted to utilize recycled aggregates in Korea, but since most sources of recycled aggregates are not clear, there is a lot of uncertainty in applying the existing research results on recycle of aggregates generated from nuclear power plants. In this study, therefore, in order to investigate the possibility of recycling coarse aggregates generated through dismantling of nuclear power plants in Korea, recycled coarse aggregates were produced from concrete simulating nuclear power plants in Korea. Using the recycled coarse aggregates, concrete was mixed in consideration of the mixing ratio of the recycled coarse aggregates, and the mechanical properties were experimentally investigated. From the test results, as the mixing ratio of recycled coarse aggregates increased. concrete compressive strength, tensile strength, and elastic modulus generally decreased up to 36, 37, and 27% from the mechanical properties of normal concrete, respectively. Therefore, it can be concluded that limitation on the mixing ratio of recycled coarse aggregates is necessary when coarse aggregates are recycled through dismantling of nuclear power plants.

Experimental Study of Flexural Behavior of Reinforced Concrete Beams with Different Types of Coarse Aggregates (순환골재 치환률에 따른 철근콘크리트 보의 휨거동에 관한 실험적 연구)

  • Lee, Young-Oh;Jeon, Esther;Yun, Hyun-Do;You, Young-Chan;Kim, Keung-Hwan;Choi, Ki-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.45-48
    • /
    • 2006
  • This study is to evaluate flexural behavior of RC beam with different types of coarse aggregates, so called natural or recycled aggregate. Two reinforced concrete beams were manufactured with different replacement level of recycled coarse aggregates : Concrete made with 0% of coarse aggregates, concrete made with 100% of recycled coarse aggregates. From the test, the general flexural performances of RC beams with different types of coarse aggregates such as cracking moment, crack patterns, maximum moment/crack width are discussed.

  • PDF

Planting Properties of Porous Polymer Block Using Recycled Coarse Aggregates (재생굵은골재를 사용한 다공성 폴리머 블록의 식생 특성)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.1
    • /
    • pp.87-96
    • /
    • 2010
  • This study was performed to evaluate the planting properties of herbaceous plant and cool-season grass in porous polymer blocks that were manufactured by using recycled coarse aggregates and unsaturated polyester resin to develop environmentally friendly planting blocks. Unsaturated polyester resin, natural and recycled coarse aggregates and $CaCO_3$ were used. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate sizes(5-10 and 5-20mm). Tests for the void ratio and compressive strength of porous polymer concrete were performed at curing age 7 days. Also, porous polymer block using recycled coarse aggregates were applied to kinds of plants such as tall fescue, Perennial ryegrass, Lesedeza and Alfalfa. After seed, initial germination, germination ratio, cover view and growth length for planting blocks were estimated by various methods.

Using Recycled Aggregates in Sustainable Resource Circulation System Concrete for Environment Preservation (녹색자연환경 보존을 위한 지속가능한 자원순환시스템 콘크리트)

  • Lee, Young-Joo;Jang, Jung-Kwun;Kim, Yoon-Il;Lim, Chil-Soon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.57-61
    • /
    • 2010
  • In this study, many concrete specimens were tested to investigate the variations of strength characteristics of high-strength concrete due to amount of recycled coarse aggregates, and to investigate the effect of steel-fiber reinforcement on concrete using recycled coarse aggregates. Test results showed that all of the variations of compressive, tensile and flexural strength appeared in linear reduction according to icrease the amount of recycled coarse aggregates, and steel-fiber reinforcement of 0.75% volumn of concrete recovered completely spliting tensile strength and flexual strength and recovered greatly compressive strength of concrete using recycled coarse aggregates of 100% displacement. And test results showed that the shear strength falled rapidly at 30% of replacement ratio so far as 34% of strength reduction ratio, but after that it falled a little within 3% up to the replacement ratio 100%, and steel-fiber reinforcement of 0.75% of concrete volumn recovered completely the deteriorated shear strength, moreover improved the shear strength above 50% rather than that of concrete using natural coarse aggregates.

  • PDF

Rheological, physico-mechanical and durability properties of multi-recycled concrete

  • Rahmani, Abdessamed Azzaz;Chemrouk, Mohamed;Ammar-Boudjelal, Amina
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.9-22
    • /
    • 2020
  • The present work looks at the possibilities of recycling more than once demolished concrete as coarse aggregates, to produce new concrete. Different concrete mixes were made with substitutions of 50%, 75% and 100% of recycled concrete aggregates respectively as coarse aggregates. The physico-mechanical characterization tests carried out on the recycled concrete aggregates revealed that they are suitable for use in obtaining a structural concrete. The resulting concrete materials had rheological parameters, compressive strengths and tensile strengths very slightly lower than those of the original concrete even when 100% of two cycles recycled concrete aggregates were used. The durability of the recycled aggregates concrete was assessed through water permeability, water absorption and chemical attacks. The obtained concretes were thought fit for use as structural materials. A linear regression was developed between the strength of the material and the number of cycles of concrete recycling to anticipate the strength of the recycled aggregates concrete. From the results, it appear clear that recycling demolished concrete represents a valuable resource for aggregates supply to the concrete industry and a the same time plays a key role in meeting the challenge for a sustainable development.

Evaluation on the Mechanical Performance of Low-Quality Recycled Aggregate Through Interface Enhancement Between Cement Matrix and Coarse Aggregate by Surface Modification Technology

  • Choi, Heesup;Choi, Hyeonggil;Lim, Myungkwan;Inoue, Masumi;Kitagaki, Ryoma;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.87-97
    • /
    • 2016
  • In this study, a quantitative review was performed on the mechanical performance, permeation resistance of concrete, and durability of surface-modified coarse aggregates (SMCA) produced using low-quality recycled coarse aggregates, the surface of which was modified using a fine inorganic powder. The shear bond strength was first measured experimentally and the interface between the SMCA and the cement matrix was observed with field-emission scanning electron microscopy. The results showed that a reinforcement of the interfacial transition zone (ITZ), a weak part of the concrete, by coating the surface of the original coarse aggregate with surface-modification material, can help suppress the occurrence of microcracks and improve the mechanical performance of the aggregate. Also, the use of low-quality recycled coarse aggregates, the surfaces of which were modified using inorganic materials, resulted in improved strength, permeability, and durability of concrete. These results are thought to be due to the enhanced adhesion between the recycled coarse aggregates and the cement matrix, which resulted from the improved ITZ in the interface between a coarse aggregate and the cement matrix.

Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag

  • Djelloul, Omar Kouider;Menadi, Belkacem;Wardeh, George;Kenai, Said
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.103-121
    • /
    • 2018
  • This paper reports the effects of coarse and fine recycled concrete aggregates (RCA) on fresh and hardened properties of self-compacting concrete (SCC) containing ground granulated blast-furnace slag (GGBFS) as cement replacement. For this purpose, three SCC mixes groups, were produced at a constant water to binder ratio of 0.38. Both fine and coarse recycled aggregates were used as natural aggregates (NA) replacement at different substitution levels of 0%, 25%, 50%, 75% and 100% by volume for each mix group. Each group, included 0, 15% or 30% GGBFS as Portland cement replacement by weight. The SCC properties investigated were self-compactability parameters (i.e., slump flow, T500 time, V-funnel flow time, L-box passing ability and sieve stability), compressive strength, capillary water absorption and water penetration depth. The results show that the combined use of RCA with GGBFS had a significant effect on fresh and hardened SCC mixes. The addition of both fine and coarse recycled aggregates as a substitution up to 50% of natural aggregates enhance the workability of SCC mixes, whereas the addition from 50 to 100% decreases the workability, whatever the slag content used as cement replacement. An enhancement of workability of SCC mixes with recycled aggregates was noticed as increasing GGBFS from 0 to 30%. RCA content of 25% to 50% as NA replacement and cement replacement of 15% GGBFS seems to be the optimum level to produce satisfactory SCC without any bleeding or segregation. Furthermore, the addition of slag to recycled concrete aggregates of SCC mixes reduces strength losses at the long term (56 and 90 days). However, a decrease in the capillary water absorption and water permeability depth was noticed, when using RCA mixes with slag.