• 제목/요약/키워드: Recursive Least Squares

검색결과 174건 처리시간 0.017초

An improved extended Kalman filter for parameters and loads identification without collocated measurements

  • Jia He;Mengchen Qi;Zhuohui Tong;Xugang Hua;Zhengqing Chen
    • Smart Structures and Systems
    • /
    • 제31권2호
    • /
    • pp.131-140
    • /
    • 2023
  • As well-known, the extended Kalman filter (EKF) is a powerful tool for parameter identification with limited measurements. However, traditional EKF is not applicable when the external excitation is unknown. By using least-squares estimation (LSE) for force identification, an EKF with unknown input (EKF-UI) approach was recently proposed by the authors. In this approach, to ensure the influence matrix be of full column rank, the sensors have to be deployed at all the degrees-of-freedom (DOFs) corresponding to the unknown excitation, saying collocated measurements are required. However, it is not easy to guarantee that the sensors can be installed at all these locations. To circumvent this limitation, based on the idea of first-order-holder discretization (FOHD), an improved EKF with unknown input (IEKF-UI) approach is proposed in this study for the simultaneous identification of structural parameters and unknown excitation. By using projection matrix, an improved observation equation is obtained. Few displacement measurements are fused into the observation equation to avoid the so-called low-frequency drift. To avoid the ill-conditioning problem for force identification without collocated measurements, the idea of FOHD is employed. The recursive solution of the structural states and unknown loads is then analytically derived. The effectiveness of the proposed approach is validated via several numerical examples. Results show that the proposed approach is capable of satisfactorily identifying the parameters of linear and nonlinear structures and the unknown excitation applied to them.

The Improvement of Convergence Characteristic using the New RLS Algorithm in Recycling Buffer Structures

  • Kim, Gwang-Jun;Kim, Chun-Suck
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.691-698
    • /
    • 2003
  • 적응 횡단선 필터에서 수렴 속도의 개선을 위해 기존의 최소 평균 자승 알고리즘을 확장한 반복적 최소 자승 알고리즘의 탭 가중치 갱신 메커니즘에 재순환 데이터 버퍼를 이용함으로서 수렴특성을 개선시키는 효율적인 기법을 제시하였다. 본 논문은 기존의 적응 횡단선 필터에 데이터 재순환 버퍼 구조를 제안하여 새로운 RLS 탭 가중치 갱신 알고리즘을 유도하여 조화 평균 학습 곡선의 평균 자승 에러 값에 대한 반복수에 대해서 데이터 재순환 버퍼를 사용한 학습 곡선의 수렴 속도가 버퍼가 없는 경우의 재순환 버퍼 RLS 알고리즘의 수렴 속도보다 비례하여 빠르게 수렴한다는 것을 수학적인 연산을 통해 증명하였다. 채널 진폭의 왜곡의 정도와 재순환 데이터 버퍼 수에 따른 평균 자승 에러에 대한 삼차원 시뮬레이션 결과로부터 고유치 확산이 증가함에 따라 특정 값에 수렴하기 위한 요구된 샘플의 반복수가 비례하여 증가하였으며, 재순환 데이터 버퍼 수 B가 증가함에 따라 요구된 샘플의 반복수가 B배만큼 감소함으로서 제안된 구조에서 RLS 가중치 갱신 알고리즘의 수렴특성이 개선됨을 입증하였다.

평균 제곱 투영 오차의 기울기에 기반한 가변 망각 인자 FAPI 알고리즘 (Mean Square Projection Error Gradient-based Variable Forgetting Factor FAPI Algorithm)

  • 서영광;신종우;서원기;김형남
    • 전자공학회논문지
    • /
    • 제51권5호
    • /
    • pp.177-187
    • /
    • 2014
  • 본 논문에서는 고속 부공간 추적 기법인 FAPI (Fast Approsimated Power Iteration)에 GVFF RLS (Gradient-based Variable Forgetting Factor Recursive Least Square Error)를 적용한 GVFF FAPI 를 제안한다. 기존의 FAPI는 신호의 공분산 행렬을 추정하기 위해 고정 망각 인자를 사용하기에, 부공간이 지속적으로 변하는 비정재 환경에 적용하기 여려운 단점이 있다. 이러한 문제점을 해결하기 위해, GVFF FAPI는 개선된 MSE (Mean Square Error)의 분석으로부터 유도된 MSE의 기울기 기반의 시변 망각 인자를 사용한다. 또한 GVFF RLS의 망각 인자 업데이트 식을 개선하여 부공간이 지속적으로 변하는 비정재 환경에서 부공간 에러를 줄인다. 개선된 망각 인자 업데이트 식은 MSE의 기울기가 양수이면 망각 인자를 빠르게 감소하게 하고 MSE의 기울기가 음수이면 망각 인자를 천천히 증가시킨다. 모의실험을 통해서 도래각이 지속적으로 변하는 환경에서 GVFF FAPI 알고리즘이 기존의 FAPI 알고리즘보다 작은 부공간 에러를 가지는 것을 보이고, 추적된 부공간을 도래각 추정기법에 적용하였을 때 추적된 도래각의 RMSE (Root Mean Square Error)가 더 작은 것을 확인한다.

데이터-재순환 구조에서 적응 가중치 갱신을 통한 LMS 알고리즘 수렴 속 도 개선 (Improvement of LMS Algorithm Convergence Speed with Updating Adaptive Weight in Data-Recycling Scheme)

  • 김광준;장혁;석경휴;나상동
    • 정보보호학회논문지
    • /
    • 제9권4호
    • /
    • pp.11-22
    • /
    • 1999
  • LMS 적응필터는 많은 신호처리 응용분야에서 광범위하게 사용되고 있으나 반복 적 최소 자승 (RLS) 적응 필터와 비교해서 주어진 안정상태 평균 자승 에러에 대한 수렴특성이 떨어진 다. 본 논문은 LMS 알고리즘의 수렴속도를 향상시키기 위해 폐기된 탭 입력 데이터를 몇 개의 한정된 버퍼를 이용 탭 가중치를 적응적으로 조절하여 수렴특성을 개선한다. 컴퓨터 시뮬레이션 결과를 통해 스텝 크기 매 개변수 $\mu$값의 증가는 보다 빠른 수렴속도와 평균 자승에러를 감소시키는 효과를 가지므로 데이터 재순 환 버퍼 구조에서 탭 가중치의 갱신에 비례하여 평균 자승 에러의 수렴속도가 재순환 버퍼 B를 증가시 켜 수렴속도가 (B+1)배 만큼 증가한다. 데이터 버퍼 알고리즘을 이용한 제안된 TDL 필터가 LMS 알고 리즘과 동일한 수렴조건을 가지고 실행될 때 연산복잡성의 실질적 부담감을 배제하고 채널 간의 상호심 볼간섭을 보다 효율적으로 제어하면서 적응 횡단선 필터의 수렴속도를 증기시켜 개선한다.