• Title/Summary/Keyword: Recursive Learning

Search Result 112, Processing Time 0.032 seconds

Robot Skill Learning Strategy for Contact Task (접촉 작업을 위한 로봇의 스킬 학습 전략)

  • Kim, Byung-Chan;Kang, Byung-Duk;Park, Shin-Suk;Kang, Sung-Chul
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.2
    • /
    • pp.146-153
    • /
    • 2008
  • 본 논문에서는 인간 운동 제어 이론과 기계학습을 기반으로 하여 로봇의 접촉 작업 수행을 위한 새로운 운동 학습 전략을 제시하였다. 성공적인 접촉 작업 수행을 위한 본 연구의 전략은 강화학습 기법을 통하여 최적의 작업 수행을 위한 임피던스 매개 변수를 찾는 것이다. 본 연구에서는 최적의 임피던스 매개 변수를 결정하기 위하여 Recursive Least-Square (RLS) 필터 기반 episodic Natural Actor-Critic 알고리즘이 적용되었다. 본 논문에서는 제안한 전략의 효용성을 증명하기 위해 동역학 시뮬레이션을 수행하였고, 그 결과를 통하여 접촉작업에서의 작업 최적화 및 환경이 가지는 불확실성에 대한 적응성을 보여 주었다.

  • PDF

A Study on a Stochastic Nonlinear System Control Using Hyperbolic Quotient Competitive Learning Neural Networks (Hyperbolic Quotient 경쟁학습 신경회로망을 사용한 비선형 확률시스템 제어에 관한 연구)

  • 석진욱;조성원;최경삼
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.346-352
    • /
    • 1998
  • In this paper, we give some geometric condition for a stochastic nonlinear system and we propose a control method for a stochastic nonlinear system using neural networks. Since a competitive learning neural networks has been developed based on the stochastic approximation method, it is regarded as a stochastic recursive filter algorithm. In addition, we provide a filtering and control condition for a stochastic nonlinear system, called perfect filtering condition, in a viewpoint of stochastic geometry. The stochastic nonlinear system satisfying the perfect filtering condition is decoupled with a deterministic part and purely semi martingale part. Hence, the above system can be controlled by conventional control laws and various intelligent control laws. Computer simulation shows that the stochastic nonlinear system satisfying the perfect filtering condition is controllable. and the proposed neural controller is more efficient than the conventional LQG controller and the canoni al LQ-Neural controller.

  • PDF

Performance Evaluation of a Feature-Importance-based Feature Selection Method for Time Series Prediction

  • Hyun, Ahn
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.82-89
    • /
    • 2023
  • Various machine-learning models may yield high predictive power for massive time series for time series prediction. However, these models are prone to instability in terms of computational cost because of the high dimensionality of the feature space and nonoptimized hyperparameter settings. Considering the potential risk that model training with a high-dimensional feature set can be time-consuming, we evaluate a feature-importance-based feature selection method to derive a tradeoff between predictive power and computational cost for time series prediction. We used two machine learning techniques for performance evaluation to generate prediction models from a retail sales dataset. First, we ranked the features using impurity- and Local Interpretable Model-agnostic Explanations (LIME) -based feature importance measures in the prediction models. Then, the recursive feature elimination method was applied to eliminate unimportant features sequentially. Consequently, we obtained a subset of features that could lead to reduced model training time while preserving acceptable model performance.

Development of suspended solid concentration measurement technique based on multi-spectral satellite imagery in Nakdong River using machine learning model (기계학습모형을 이용한 다분광 위성 영상 기반 낙동강 부유 물질 농도 계측 기법 개발)

  • Kwon, Siyoon;Seo, Il Won;Beak, Donghae
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.121-133
    • /
    • 2021
  • Suspended Solids (SS) generated in rivers are mainly introduced from non-point pollutants or appear naturally in the water body, and are an important water quality factor that may cause long-term water pollution by being deposited. However, the conventional method of measuring the concentration of suspended solids is labor-intensive, and it is difficult to obtain a vast amount of data via point measurement. Therefore, in this study, a model for measuring the concentration of suspended solids based on remote sensing in the Nakdong River was developed using Sentinel-2 data that provides high-resolution multi-spectral satellite images. The proposed model considers the spectral bands and band ratios of various wavelength bands using a machine learning model, Support Vector Regression (SVR), to overcome the limitation of the existing remote sensing-based regression equations. The optimal combination of variables was derived using the Recursive Feature Elimination (RFE) and weight coefficients for each variable of SVR. The results show that the 705nm band belonging to the red-edge wavelength band was estimated as the most important spectral band, and the proposed SVR model produced the most accurate measurement compared with the previous regression equations. By using the RFE, the SVR model developed in this study reduces the variable dependence compared to the existing regression equations based on the single spectral band or band ratio and provides more accurate prediction of spatial distribution of suspended solids concentration.

Learning Input Shaping Control with Parameter Estimation for Nonlinear Actuators (비선형 구동기의 변수추정을 통한 학습입력성형제어기)

  • Kim, Deuk-Hyeon;Sung, Yoon-Gyung;Jang, Wan-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1423-1428
    • /
    • 2011
  • This paper proposes a learning input shaper with nonlinear actuator dynamics to reduce the residual vibration of flexible systems. The controller is composed of an estimator of the time constant of the nonlinear actuator dynamics, a recursive least squares method, and an iterative updating algorithm. The updating mechanism is modified by introducing a vibration measurement function to cope with the dynamics of nonlinear actuators. The controller is numerically evaluated with respect to parameter convergence and control performance by using a benchmark pendulum system. The feasibility and applicability of the controller are demonstrated by comparing its control performance to that of an existing controller algorithm.

A Dynamic Neural Networks for Nonlinear Control at Complicated Road Situations (복잡한 도로 상태의 동적 비선형 제어를 위한 학습 신경망)

  • Kim, Jong-Man;Sin, Dong-Yong;Kim, Won-Sop;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2949-2952
    • /
    • 2000
  • A new neural networks and learning algorithm are proposed in order to measure nonlinear heights of complexed road environments in realtime without pre-information. This new neural networks is Error Self Recurrent Neural Networks(ESRN), The structure of it is similar to recurrent neural networks: a delayed output as the input and a delayed error between the output of plant and neural networks as a bias input. In addition, we compute the desired value of hidden layer by an optimal method instead of transfering desired values by back-propagation and each weights are updated by RLS(Recursive Least Square). Consequently. this neural networks are not sensitive to initial weights and a learning rate, and have a faster convergence rate than conventional neural networks. We can estimate nonlinear models in realtime by ESRN and learning algorithm and control nonlinear models. To show the performance of this one. we control 7 degree of freedom full car model with several control method. From this simulation. this estimation and controller were proved to be effective to the measurements of nonlinear road environment systems.

  • PDF

Comparative Analysis of Baseflow Separation using Conventional and Deep Learning Techniques

  • Yusuff, Kareem Kola;Shiksa, Bastola;Park, Kidoo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.149-149
    • /
    • 2022
  • Accurate quantitative evaluation of baseflow contribution to streamflow is imperative to address seasonal drought vulnerability, flood occurrence and groundwater management concerns for efficient and sustainable water resources management in watersheds. Several baseflow separation algorithms using recursive filters, graphical method and tracer or chemical balance have been developed but resulting baseflow outputs always show wide variations, thereby making it hard to determine best separation technique. Therefore, the current global shift towards implementation of artificial intelligence (AI) in water resources is employed to compare the performance of deep learning models with conventional hydrograph separation techniques to quantify baseflow contribution to streamflow of Piney River watershed, Tennessee from 2001-2021. Streamflow values are obtained from the USGS station 03602500 and modeled to generate values of Baseflow Index (BI) using Web-based Hydrograph Analysis (WHAT) model. Annual and seasonal baseflow outputs from the traditional separation techniques are compared with results of Long Short Term Memory (LSTM) and simple Gated Recurrent Unit (GRU) models. The GRU model gave optimal BFI values during the four seasons with average NSE = 0.98, KGE = 0.97, r = 0.89 and future baseflow volumes are predicted. AI offers easier and more accurate approach to groundwater management and surface runoff modeling to create effective water policy frameworks for disaster management.

  • PDF

Intelligent System for the Prediction of Heart Diseases Using Machine Learning Algorithms with Anew Mixed Feature Creation (MFC) technique

  • Rawia Elarabi;Abdelrahman Elsharif Karrar;Murtada El-mukashfi El-taher
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.148-162
    • /
    • 2023
  • Classification systems can significantly assist the medical sector by allowing for the precise and quick diagnosis of diseases. As a result, both doctors and patients will save time. A possible way for identifying risk variables is to use machine learning algorithms. Non-surgical technologies, such as machine learning, are trustworthy and effective in categorizing healthy and heart-disease patients, and they save time and effort. The goal of this study is to create a medical intelligent decision support system based on machine learning for the diagnosis of heart disease. We have used a mixed feature creation (MFC) technique to generate new features from the UCI Cleveland Cardiology dataset. We select the most suitable features by using Least Absolute Shrinkage and Selection Operator (LASSO), Recursive Feature Elimination with Random Forest feature selection (RFE-RF) and the best features of both LASSO RFE-RF (BLR) techniques. Cross-validated and grid-search methods are used to optimize the parameters of the estimator used in applying these algorithms. and classifier performance assessment metrics including classification accuracy, specificity, sensitivity, precision, and F1-Score, of each classification model, along with execution time and RMSE the results are presented independently for comparison. Our proposed work finds the best potential outcome across all available prediction models and improves the system's performance, allowing physicians to diagnose heart patients more accurately.

A Study on Learning and Teaching Environments for Computers and Mathematics Education ('컴퓨터와 수학교육' 학습-지도 환경에 관한 연구)

  • Kim, Hwa-Kyung
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.4
    • /
    • pp.367-386
    • /
    • 2006
  • There are two strands for considering tile relationships between education and technology. One is the viewpoint of 'learning from computers' and the other is that of 'learning with computers'. In this paper, we call mathematics education with computers as 'computers and mathematics education' and this computer environments as microworlds. In this paper, we first suggest theoretical backgrounds ai constructionism, mathematization, and computer interaction. These theoretical backgrounds are related to students, school mathematics and computers, relatively As specific strategies to design a microworld, we consider a physical construction, fuctiionization, and internet interaction. Next we survey the different microworlds such as Logo and Dynamic Geometry System(DGS), and reform each microworlds for mathematical level-up of representation. First, we introduce the concept of action letters and its manipulation for representing turtle actions and recursive patterns in turtle microworld. Also we introduce another algebraic representation for representing DGS relation and consider educational moaning in dynamic geometry microworld. We design an integrating microworld between Logo and DGS. First, we design a same command system and we get together in a microworld. Second, these microworlds interact each other and collaborate to construct and manipulate new objects such as tiles and folding nets.

  • PDF

Diagnosis of Alzheimer's Disease using Combined Feature Selection Method

  • Faisal, Fazal Ur Rehman;Khatri, Uttam;Kwon, Goo-Rak
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.667-675
    • /
    • 2021
  • The treatments for symptoms of Alzheimer's disease are being provided and for the early diagnosis several researches are undergoing. In this regard, by using T1-weighted images several classification techniques had been proposed to distinguish among AD, MCI, and Healthy Control (HC) patients. In this paper, we also used some traditional Machine Learning (ML) approaches in order to diagnose the AD. This paper consists of an improvised feature selection method which is used to reduce the model complexity which accounted an issue while utilizing the ML approaches. In our presented work, combination of subcortical and cortical features of 308 subjects of ADNI dataset has been used to diagnose AD using structural magnetic resonance (sMRI) images. Three classification experiments were performed: binary classification. i.e., AD vs eMCI, AD vs lMCI, and AD vs HC. Proposed Feature Selection method consist of a combination of Principal Component Analysis and Recursive Feature Elimination method that has been used to reduce the dimension size and selection of best features simultaneously. Experiment on the dataset demonstrated that SVM is best suited for the AD vs lMCI, AD vs HC, and AD vs eMCI classification with the accuracy of 95.83%, 97.83%, and 97.87% respectively.