• Title/Summary/Keyword: Recursive Learning

Search Result 112, Processing Time 0.026 seconds

Preservice teachers' Key Developmental Understandings (KDUs) for fraction multiplication (예비교사의 분수 곱셈을 위한 '발달에 핵심적인 이해'에 관한 연구)

  • Lee, Soo-Jin;Shin, Jae-Hong
    • Journal of the Korean School Mathematics Society
    • /
    • v.14 no.4
    • /
    • pp.477-490
    • /
    • 2011
  • The concept of pedagogical content knowledge (PCK) has been developed and expanded to identify essential components of mathematical knowledge for teaching (MKT) by Ball and her colleagues (2008). This study proposes an alternative perspective to view MKT focusing on key developmental understandings (KDUs) that carry through an instructional sequence, that are foundational for learning other ideas. In this study we provide constructive components of KDUs in fraction multiplication by focusing on the constructs of 'three-level-of-units structure' and 'recursive partitioning operation'. Expecially, our participating preservice elementary teacher, Jane, demonstrated that recursive partitioning operations with her length model played a significant role as a KDU in fraction multiplication.

  • PDF

An analysis of the algorithm efficiency of conceptual thinking in the divisibility unit of elementary school (초등학교 가분성(divisibility) 단원에서 개념적 사고의 알고리즘 효율성 분석 연구)

  • Choi, Keunbae
    • The Mathematical Education
    • /
    • v.58 no.2
    • /
    • pp.319-335
    • /
    • 2019
  • In this paper, we examine the effectiveness of calculation according to automation, which is one of Computational Thinking, by coding the conceptual process into Python language, focusing on the concept of divisibility in elementary school textbooks. The educational implications of these considerations are as follows. First, it is possible to make a field of learning that can revise the new mathematical concept through the opportunity to reinterpret the Conceptual Thinking learned in school mathematics from the perspective of Computational Thinking. Second, from the analysis of college students, it can be seen that many students do not have mathematical concepts in terms of efficiency of computation related to the divisibility. This phenomenon is a characteristic of the mathematics curriculum that emphasizes concepts. Therefore, it is necessary to study new mathematical concepts when considering the aspect of utilization. Third, all algorithms related to the concept of divisibility covered in elementary mathematics textbooks can be found to contain the notion of iteration in terms of automation, but little recursive activity can be found. Considering that recursive thinking is frequently used with repetitive thinking in terms of automation (in Computational Thinking), it is necessary to consider low level recursive activities at elementary school. Finally, it is necessary to think about mathematical Conceptual Thinking from the point of view of Computational Thinking, and conversely, to extract mathematical concepts from computer science's Computational Thinking.

Adaptive Background Modeling for Crowded Scenes (혼잡한 환경에 적합한 적응적인 배경모델링 방법)

  • Lee, Gwang-Gook;Song, Su-Han;Ka, Kee-Hwan;Yoon, Ja-Young;Kim, Jae-Jun;Kim, Whoi-Yul
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.5
    • /
    • pp.597-609
    • /
    • 2008
  • Due to the recursive updating nature of background model, previous background modeling methods are often perturbed by crowd scenes where foreground pixels occurs more frequently than background pixels. To resolve this problem, an adaptive background modeling method, which is based on the well-known Gaussian mixture background model, is proposed. In the proposed method, the learning rate of background model is adaptively adjusted with respect to the crowdedness of the scene. Consequently, the learning process is suppressed in crowded scene to maintain proper background model. Experiments on real dataset revealed that the proposed method could perform background subtraction effectively even in crowd situation while the performance is almost the same to the previous method in normal scenes. Also, the F-measure was increased by 5-10% compared to the previous background modeling methods in the video of crowded situations.

  • PDF

Self-Organizing Fuzzy Modeling Using Creation of Clusters (클러스터 생성을 이용한 자기구성 퍼지 모델링)

  • Koh, Taek-Beom
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.334-340
    • /
    • 2002
  • This paper proposes a self-organizing fuzzy modeling which can create a new hyperplane-shaped cluster by applying multiple regression to input/output data with relatively large fuzzy entropy, add the new cluster to fuzzy rule base and adjust parameters of the fuzzy model in repetition. Tn the coarse tuning, weighted recursive least squared algorithm and fuzzy C-regression model clustering are used and in the fine tuning, gradient descent algorithm is used to adjust parameters of the fuzzy model precisely And learning rates are optimized by utilizing meiosis-genetic algorithm. To check the effectiveness and feasibility of the suggested algorithm, four representative examples for system identification are examined and the performance of the identified fuzzy model is demonstrated in comparison with that of the conventional fuzzy models.

Temperature Control by On-line CFCM-based Adaptive Neuro-Fuzzy System (온 라인 CFCM 기반 적응 뉴로-퍼지 시스템에 의한 온도제어)

  • 윤기후;곽근창
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.414-422
    • /
    • 2002
  • In this paper, we propose a new method of adaptive neuro-fuzzy control using CFCM(Conditional Fuzzy c-means) clustering and fuzzy equalization method to deal with adaptive control problem. First, in the off-line design, CFCM clustering performs structure identification of adaptive neuro-fuzzy control with the homogeneous properties of the given input and output data. The parameter identification are established by hybrid learning using back-propagation algorithm and RLSE(Recursive Least Square Estimate). In the on-line design, the premise and consequent parameters are tuned to RLSE with forgetting factor due to a characteristic of time variant. Finally, we applied the proposed method to the water temperature control system and obtained better results than previous works such as fuzzy control.

A Estimated Neural Networks for Adaptive Cognition of Nonlinear Road Situations (굴곡있는 비선형 도로 노면의 최적 인식을 위한 평가 신경망)

  • Kim, Jong-Man;Kim, Young-Min;Hwang, Jong-Sun;Sin, Dong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.573-577
    • /
    • 2002
  • A new estimated neural networks are proposed in order to measure nonlinear road environments in realtime. This new neural networks is Error Estimated Neural Networks. The structure of it is similar to recurrent neural networks; a delayed output as the input and a delayed error between the output of plant and neural networks as a bias input. In addition, we compute the desired value of hidden layer by an optimal method instead of transfering desired values by backpropagation and each weights are updated by RLS(Recursive Least Square). Consequently, this neural networks are not sensitive to initial weights and a learning rate, and have a faster convergence rate than conventional neural networks. We can estimate nonlinear models in realtime by the proposed networks and control nonlinear models. To show the performance of this one, we control 7 degree simulation, this controller and driver were proved to be effective to drive a car in the environments of nonlinear road systems.

  • PDF

A Design of New Digital Adaptive Predistortion Linearizer Algorithm Based on DFP(Davidon-Fletcher-Powell) Method (DFP Method 기반의 새로운 적응형 디지털 전치 왜곡 선형화기 알고리즘 개발)

  • Jang, Jeong-Seok;Choi, Yong-Gyu;Suh, Kyoung-Whoan;Hong, Ui-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.312-319
    • /
    • 2011
  • In this paper, a new linearization algorithm for DPD(Digital PreDistorter) is suggested. This new algorithm uses DFP(Davidon-Fletcher-Powell) method. This algorithm is more accurate than that of the existing algorithms, and this method renew the best-fit value in every routine with out setting the initial value of step-size. In modeling power amplifier, the memory polynomial model which can model the memory effect of the power amplifier is used. And the overall structure of linearizer is based on an indirect learning architecture. In order to verify for performance of proposed algorithm, we compared with LMS(Least Mean-Squares), RLS(Recursive Least squares) algorithm.

A New Polynomial Digital Predistortion Method Based on Direct Learning for Linearizing Nonlinear Power Amplifier (비선형 앰프의 선형화를 위한 다항식 기반 직접 학습 방식의 디지털 사전왜곡 기법)

  • Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2382-2390
    • /
    • 2007
  • A new polynomial-based predistortion method for linearizing nonlinear power amplifier is proposed. The proposed method finds the predistortion parameter directly without the help of postdistorter whereas most existing polynomial-based predistortion methods calculate the predistortion parameter indirectly from the prostdistorter. First, a new predistortion algorithm is derived based on the assumption that the characteristic of the amplifier is modeled by piecewise linear function. Then it is modified into a proposed method which does not require any assumption or prior knowledge of the amplifier. The proposed method is derived based on the RLS (recursive least squares) algorithm. The proposed technique is simpler to implement than the existing methods and the computer simulation demonstrates that the proposed method is more robust to the initial condition and the saturation region of the amplifier.

Performance Comparison of Crawling Robots Trained by Reinforcement Learning Methods (강화학습에 의해 학습된 기는 로봇의 성능 비교)

  • Park, Ju-Yeong;Jeong, Gyu-Baek;Mun, Yeong-Jun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.33-36
    • /
    • 2007
  • 최근에 인공지능 분야에서는, 국내외적으로 강화학습(reinforcement learning)에 관한 관심이 크게 증폭되고 있다. 강화학습의 최근 경향을 살펴보면, 크게 가치함수를 직접 활용하는 방법(value function-based methods), 제어 전략에 대한 탐색을 활용하는 방법(policy search methods), 그리고 액터-크리틱 방법(actor-critic methods)의 세가지 방향으로 발전하고 있음을 알 수 있다. 본 논문에서는 이중 세 번째 부류인 액터-크리틱 방법 중 NAC(natural actor-critic) 기법의 한 종류인 RLS-NAC(recursive least-squares based natural actor-critic) 알고리즘을 다양한 트레이스 감쇠계수를 사용하여 연속제어입력(real-valued control inputs)으로 제어되는 Kimura의 기는 로봇에 대해 적용해보고, 그 성능을 기존의 SGA(stochastic gradient ascent) 알고리즘을 이용하여 학습한 경우와 비교해보도록 한다.

  • PDF

Implementation of Speed-Sensorless Induction Motor Drives with RLS Algorithm (RLS 알로리즘을 이용한 유도전동기의 속도 센서리스 운전)

  • 김윤호;국윤상
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.384-387
    • /
    • 1998
  • This paper presents a newly developed speed sensorless drive using RLS(Recursive Least Squares) based on Neural Network Training Algorithm. The proposed algorithm based on the RLS has just the time-varying learning rate, while the well-known back-propagation (or generalized delta rule) algorithm based on gradient descent has a constant learning rate. The number of iterations required by the new algorithm to converge is less than that of the back-propagation algorithm. The RLS based on NN is used to adjust the motor speed so that the neural model output follows the desired trajectory. This mechanism forces the estimated speed to follow precisely the actual motor speed. In this paper, a flux estimation strategy using filter concept is discussed. The theoretical analysis and experimental results to verify the effectiveness of the proposed analysis and the proposed control strategy are described.

  • PDF