• Title/Summary/Keyword: Recursive Learning

Search Result 112, Processing Time 0.033 seconds

A Study on Design Guidelines of Learning Analytics to Facilitate Self-Regulated Learning in MOOCs

  • PARK, Taejung;CHA, Hyunjin;LEE, Gayoung
    • Educational Technology International
    • /
    • v.17 no.1
    • /
    • pp.117-150
    • /
    • 2016
  • The purpose of this study was to develop design guidelines on the learning analytics which can help to promote students' self-regulated learning (SRL) strategies in MOOCs learning environments. First of all, to develop the first draft of design guidelines, relevant literature review and case analysis on current MOOCs platforms such as edX, K-MOOC, Coursera, Khan Academy and FutureLearn were conducted. Then, to validate the design guidelines, expert reviews (validation questionnaires and in-depth interviews) and learner evaluation (in-depth interviews) were conducted. Through the recursive validation, the design guidelines were finalized. Overall, the final version of design guidelines on learning analytics to facilitate SRL strategies was suggested. The final design guidelines consist of 15 items in 10 categories related to the information analyzed based on individual student's learning behaviors and activities on MOOCs environments. Moreover, the results of interview also revealed that the social comparisons, learning progress reports, and personalization might contribute to the improvements of their SRL competences. This study has an implication that MOOCs could offer a higher success or completion rate to students with low SRL skills by taking advantage of the information on learning analytics

A New Incremental Instance-Based Learning Using Recursive Partitioning (재귀분할을 이용한 새로운 점진적 인스턴스 기반 학습기법)

  • Han Jin-Chul;Kim Sang-Kwi;Yoon Chung-Hwa
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.127-132
    • /
    • 2006
  • K-NN (k-Nearest Neighbors), which is a well-known instance-based learning algorithm, simply stores entire training patterns in memory, and uses a distance function to classify a test pattern. K-NN is proven to show satisfactory performance, but it is notorious formemory usage and lengthy computation. Various studies have been found in the literature in order to minimize memory usage and computation time, and NGE (Nested Generalized Exemplar) theory is one of them. In this paper, we propose RPA (Recursive Partition Averaging) and IRPA (Incremental RPA) which is an incremental version of RPA. RPA partitions the entire pattern space recursively, and generates representatives from each partition. Also, due to the fact that RPA is prone to produce excessive number of partitions as the number of features in a pattern increases, we present IRPA which reduces the number of representative patterns by processing the training set in an incremental manner. Our proposed methods have been successfully shown to exhibit comparable performance to k-NN with a lot less number of patterns and better result than EACH system which implements the NGE theory.

Lightweight Super-Resolution Network Based on Deep Learning using Information Distillation and Recursive Methods (정보 증류 및 재귀적인 방식을 이용한 심층 학습법 기반 경량화된 초해상도 네트워크)

  • Woo, Hee-Jo;Sim, Ji-Woo;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.378-390
    • /
    • 2022
  • With the recent development of deep composite multiplication neural network learning, deep learning techniques applied to single-image super-resolution have shown good results, and the strong expression ability of deep networks has enabled complex nonlinear mapping between low-resolution and high-resolution images. However, there are limitations in applying it to real-time or low-power devices with increasing parameters and computational amounts due to excessive use of composite multiplication neural networks. This paper uses blocks that extract hierarchical characteristics little by little using information distillation and suggests the Recursive Distillation Super Resolution Network (RDSRN), a lightweight network that improves performance by making more accurate high frequency components through high frequency residual purification blocks. It was confirmed that the proposed network restores images of similar quality compared to RDN, restores images 3.5 times faster with about 32 times fewer parameters and about 10 times less computation, and produces 0.16 dB better performance with about 2.2 times less parameters and 1.8 times faster processing time than the existing lightweight network CARN.

A Controlled Neural Networks of Nonlinear Modeling with Adaptive Construction in Various Conditions (다변 환경 적응형 비선형 모델링 제어 신경망)

  • Kim, Jong-Man;Sin, Dong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1234-1238
    • /
    • 2004
  • A Controlled neural networks are proposed in order to measure nonlinear environments in adaptive and in realtime. The structure of it is similar to recurrent neural networks: a delayed output as the input and a delayed error between tile output of plant and neural networks as a bias input. In addition, we compute the desired value of hidden layer by an optimal method instead of transfering desired values by backpropagation and each weights are updated by RLS(Recursive Least Square). Consequently, this neural networks are not sensitive to initial weights and a learning rate, and have a faster convergence rate than conventional neural networks. This new neural networks is Error Estimated Neural Networks. We can estimate nonlinear models in realtime by the proposed networks and control nonlinear models. To show the performance of this one, we have various experiments. And this controller call prove effectively to be control in the environments of various systems.

  • PDF

Nonlinear Neural Networks for Vehicle Modeling Control Algorithm based on 7-Depth Sensor Measurements (7자유도 센서차량모델 제어를 위한 비선형신경망)

  • Kim, Jong-Man;Kim, Won-Sop;Sin, Dong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.525-526
    • /
    • 2008
  • For measuring nonlinear Vehicle Modeling based on 7-Depth Sensor, the neural networks are proposed m adaptive and in realtime. The structure of it is similar to recurrent neural networks; a delayed output as the input and a delayed error between the output of plant and neural networks as a bias input. In addition, we compute the desired value of hidden layer by an optimal method instead of transfering desired values by backpropagation and each weights are updated by RLS(Recursive Least Square). Consequently, this neural networks are not sensitive to initial weights and a learning rate, and have a faster convergence rate than conventional neural networks. This new neural networks is Error Estimated Neural Networks. We can estimate nonlinear models in realtime by the proposed networks and control nonlinear models.

  • PDF

Online Probability Density Estimation of Nonstationary Random Signal using Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.109-118
    • /
    • 2008
  • We present two estimators for discrete non-Gaussian and nonstationary probability density estimation based on a dynamic Bayesian network (DBN). The first estimator is for off line computation and consists of a DBN whose transition distribution is represented in terms of kernel functions. The estimator parameters are the weights and shifts of the kernel functions. The parameters are determined through a recursive learning algorithm using maximum likelihood (ML) estimation. The second estimator is a DBN whose parameters form the transition probabilities. We use an asymptotically convergent, recursive, on-line algorithm to update the parameters using observation data. The DBN calculates the state probabilities using the estimated parameters. We provide examples that demonstrate the usefulness and simplicity of the two proposed estimators.

A Novel Network Anomaly Detection Method based on Data Balancing and Recursive Feature Addition

  • Liu, Xinqian;Ren, Jiadong;He, Haitao;Wang, Qian;Sun, Shengting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3093-3115
    • /
    • 2020
  • Network anomaly detection system plays an essential role in detecting network anomaly and ensuring network security. Anomaly detection system based machine learning has become an increasingly popular solution. However, due to the unbalance and high-dimension characteristics of network traffic, the existing methods unable to achieve the excellent performance of high accuracy and low false alarm rate. To address this problem, a new network anomaly detection method based on data balancing and recursive feature addition is proposed. Firstly, data balancing algorithm based on improved KNN outlier detection is designed to select part respective data on each category. Combination optimization about parameters of improved KNN outlier detection is implemented by genetic algorithm. Next, recursive feature addition algorithm based on correlation analysis is proposed to select effective features, in which a cross contingency test is utilized to analyze correlation and obtain a features subset with a strong correlation. Then, random forests model is as the classification model to detection anomaly. Finally, the proposed algorithm is evaluated on benchmark datasets KDD Cup 1999 and UNSW_NB15. The result illustrates the proposed strategies enhance accuracy and recall, and decrease the false alarm rate. Compared with other algorithms, this algorithm still achieves significant effects, especially recall in the small category.

A New Calculation Method of Equalizer algorithms based on the Probability Correlation (확률분포 상관도에 기반한 Equalizer 알고리듬의 새로운 연산 방식)

  • Kim, Namyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3132-3138
    • /
    • 2014
  • In many communication systems, intersymbol interference, DC and impulsive noise are hard-to-solve problems. For the purpose of cancelling such interferences, the concept of lagged cross-correlation of probability has been used for blind equalization. However, this algorithm has a large burden of computation. In this paper, a recursive method of the algorithm based on the lagged probability correlation is proposed. The summation operation in the calculation of gradient of the cost is transformed into a recursive gradient calculation. The recursive method shows to reduce the high computational complexity of the algorithm from O(NM) to O(M) for M symbols and N block data having advantages in implementation while keeping the robustness against those interferences. From the results of the simulation, the proposed method yields the same learning performance with reduced computation complexity.

An Incremental Rule Extraction Algorithm Based on Recursive Partition Averaging (재귀적 분할 평균에 기반한 점진적 규칙 추출 알고리즘)

  • Han, Jin-Chul;Kim, Sang-Kwi;Yoon, Chung-Hwa
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • One of the popular methods used for pattern classification is the MBR (Memory-Based Reasoning) algorithm. Since it simply computes distances between a test pattern and training patterns or hyperplanes stored in memory, and then assigns the class of the nearest training pattern, it cannot explain how the classification result is obtained. In order to overcome this problem, we propose an incremental teaming algorithm based on RPA (Recursive Partition Averaging) to extract IF-THEN rules that describe regularities inherent in training patterns. But rules generated by RPA eventually show an overfitting phenomenon, because they depend too strongly on the details of given training patterns. Also RPA produces more number of rules than necessary, due to over-partitioning of the pattern space. Consequently, we present the IREA (Incremental Rule Extraction Algorithm) that overcomes overfitting problem by removing useless conditions from rules and reduces the number of rules at the same time. We verify the performance of proposed algorithm using benchmark data sets from UCI Machine Learning Repository.

Design of e-Learning System for Spectral Analysis of High-Order Pulse (고차원펄스 스펙트럼 분석을 위한 이러닝 시스템의 설계)

  • Oh, Yong-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.8
    • /
    • pp.475-487
    • /
    • 2011
  • In this paper, we present a systematic method to derive spectrum of high-order pulse and a novel design of e-Learning system that deals with deriving the spectrum using concept-based branching method. Spectrum of high-order pulse can be derived using conventional methods including 'Consecutive Differentiations' or 'Convolutions', however, their complexity of calculation should be too high to be used as the order of the pulse increase. We develop a recursive algorithm according to the order of pulse, and then derive the formula of spectrum connected to the order with a newly designed look-up table. Moving along, we design an e-Learning content for studying the procedure of deriving high-order pulse spectrum described above. In this authoring, we use the concept-based object branching method including conventional page or title-type branching in sequential playing. We design all four Content-pages divided into 'Modeling', 'Impulse Response and Transfer Function', 'Parameters' and 'Look-up Table' by these conceptual objects. And modules and sub-modules are constructed hierarchically as conceptual elements from the Content-pages. Students can easily approach to the core concepts of the analysis because of the effects of our new teaching method. We offer step-by-step processes of the e-Learning content through unit-based branching scheme for difficult modules and sub-modules in our system. In addition we can offer repetitive learning processes for necessary block of given learning objects. Moreover, this method of constructing content will be considered as an advanced effectiveness of content itself.