• Title/Summary/Keyword: Recurrent Boundary Condition

Search Result 4, Processing Time 0.015 seconds

트로코이달 헬리컬 기어의 비정상상태 유한요소해석

  • ;;Yong Bok Park;Dong Yol Yang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.37-46
    • /
    • 1994
  • In metal forming, there ar problems with recurrent geometric characteristics and without explicitly prescribed boundary conditions. In such problems, so-called recurrent boundary conditions must be introduced. The present study deals with nonsteady-state three-dimensional finite element analysis for extrusion of a trocoidal helical gear through a curved die. The boundary-directed remeshing scheme based on the modular remeshing technique is developed to reduce the errors arising in fitting old and new mesh systems. The computed extrusion pressure in reaching the near steady-state loading stage is compared with the results of the experiment and the steady-state analysis. The three-dimensional deformed pattern involving warping at the extruded end due to torsional deformation mode is demonstrated.

  • PDF

Efficient FE-Analysis Method with Equivalent Models for Metallic Sandwich Plates with Inner Dimpled Shell Subject to 3-Point Bending (등가 모델을 이용한 3점 굽힘 하중을 받는 딤플형 금속 샌드위치판재의 효율적 해석)

  • Seong D. Y.;Jung C. G.;Yoon S. J.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.130-133
    • /
    • 2005
  • Efficient finite element method has been introduced for metallic sandwich plates subject to 3-point bending. A full model 3-point bending FE-analysis shows that plastic behavior of inner structures appears only at the load point. So, Unit structures of sandwich plates are defined to numerically calculate the bending stiffness with recurrent boundary condition of pure bending. And then equivalent models with same bending stiffness and strength of full models are designed analytically. It is demonstrated that results of both models are almost same and FE analysis method with equivalent models can reduce analysis time effectively.

  • PDF

Plastic Deformation Analysis of Rotating Band by Three-Dimensional Finite Element Method Using Recurrent Boundary Condition (반복경계조건을 도입한 3차원 유한요소법에 의한 회전탄대의 소성변형 공정해석)

  • 양동열;이영규;박용복;조용찬;한만준
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.122-129
    • /
    • 1996
  • The main objective of the study is to offer some basic information in relation to optimal shape and dimensions of the rotating band through the development of three-dimensional finite element method for metal forming analysis of the rotating band whose primary function is to impart spin to the projectile. The three-dimensional metal forming analysis of the rotating band has perfor-med by using recurrent boundary conditions. Such design factors as the outside diameter the total length and the profile of the rotating band must be considered carefully in order to design an optimal rotating band. Above design factors can be determined from such available analysis results as the deformed shape and the deformation load. of the rotating band and the normal pressure of the rotating band on a projectile shell. The remeshings are needed to carry out plastic deformation analysis with severe deformation through which the complete process analysis gets possible. The results can be utilized effectively in determining the optimal shape and size of the rotating band.

  • PDF

Efficient Methods of Prediction Incorporating Equivalent Models for Elasto-Plastic Bending Behavior of Metallic Sandwich Plates with Inner Dimpled Shell Structure (등가형상을 이용한 딤플형 금속 샌드위치 판재의 효율적 굽힘 거동 예측)

  • Seong D. Y.;Jung C. G.;Yoon S. J.;Yang D. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.718-724
    • /
    • 2005
  • An efficient finite element method has been introduced for analysis of metallic sandwich plates subject to bending moment. A full model 3-point bending FE-analysis shows that the plastic behavior of inner structures appears only at the load point. The unit structures of sandwich plates are defined to numerically calculate the bending stiffness and strength utilizing the recurrent boundary condition for pure bending analysis. The equivalent models with the same bending stiffness and strength of full models are then designed analytically. It is demonstrated that the results of both models are almost the same and the FE-analysis method incorporating the equivalent models can reduce the computation time effectively. The dominant collapse modes are face buckling and face yielding. Since the inner dimpled structures prevent face buckling, sandwich plates with inner dimpled shell structure can absorb more energy than other types of sandwich plates during the bending behavior.