• Title/Summary/Keyword: Rectangular distribution

Search Result 484, Processing Time 0.023 seconds

Residual stress of cold-formed thick-walled steel rectangular hollow sections

  • Zhang, Xingzhao;Liu, Su;Zhao, Mingshan;Chiew, Sing-Ping
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.837-853
    • /
    • 2016
  • This paper presents the experimental and numerical study on the distribution of transverse and longitudinal residual stresses in cold-formed thick-walled structural steel rectangular hollow sections manufactured by indirect technique. Hole-drilling method is employed to measure the magnitude of the transverse and longitudinal surface residual stress distribution, and the effects of the residual stresses are evaluated qualitatively by sectioning method. It is shown that compared to normal cold-formed thin-walled structural hollow sections (SHS), the cold-formed thick-walled SHS has similar level of residual stress in the flat area but higher residual stresses in the corner and welding areas. Both the transverse and longitudinal residual stresses tend to open the section. In order to predict the surface residual stresses in the corners of the cold-formed thick-walled SHS, an analytical model is developed. 2D finite element simulation of the cold bending process is conducted to validate the analytical approach. It is shown that in analyzing bending for thick-walled sections, shifting of neutral axis must be considered, since it would lead to nonlinear and non-symmetrical distribution of stresses through the thickness. This phenomenon leads to the fact that cold-formed thick-walled SHSs has different distribution and magnitude of the residual stresses from the cold-formed thin-walled SHSs.

EFFECT OF ASPECT RATIO ON SLIP FLOW IN RECTANGULAR MICROCHANNELS

  • Islam, Md.Tajul;Lee, Yeon-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2803-2810
    • /
    • 2007
  • Three dimensional numerical studies were carried out to investigate the effect of aspect ratio on gas slip flow in rectangular microchannels. We focused on aspect ratio effect on slip velocity, pressure distribution and mass flow rate. As aspect ratio decreases the wall slip velocity also decreases. As a result nonlinearity of pressure distribution increases. The slip velocities on sides and top/bottom walls are different and this difference decreases with increasing aspect ratio. These two velocities are equal when aspect ratio is 1. The ratios of slip mass flow rate over noslip mass flow rate increases with increasing aspect ratios.

  • PDF

Temperature Distribution and Heat Transfer of Rectangular Cross-Section by the Finite Element Method (유한요소법(有限要素法)에 의(依)한 구형단면(矩形斷面)의 온도분포(溫度分布)와 열전도(熱傳導))

  • Yong, Ho-Taek;Seo, Jeong-Il;Im, Jang-Sun
    • Solar Energy
    • /
    • v.1 no.1
    • /
    • pp.23-29
    • /
    • 1981
  • This paper studied the temperature distribution and heat transfer at a rectangular cross-section. Particularly, as we have known that FEM6, FEM10 can be able to divide FEM3 (25), FEM 3 (49) and we observed it with the details. The approximate solutions (FDM, FEM 3, FEM 3 (25), FEM 3 (49), FEM(6) were compared to the 2-dimensional exact solution. The results of this paper show that FEM 6 is the most accurate temperature profiles and heat transfer, furthermore mean values of the FEM 6 is more accurate than FEM 3(25) and FEM 3 (49).

  • PDF

The Fundamental Study on Pulse Jet Cleaning of Rectangular Bag-Filter System (사각형 여과 집진기 충격기류 탈진시스템의 기초 연구)

  • Piao, Cheng Xu;Kim, Tae Hyeung;Yang, Jun Ho;Li, Xiao Yu;Ha, Hyun Chul;Jung, Jae Hun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.2
    • /
    • pp.149-160
    • /
    • 2008
  • Bag-filter system has been widely used in industrial field to remove the particulate matters from the exhaust gas. The cylindrical type of bag-filter has been generally used. But it has many shortcomings. The reattachment of separated particles on the surface of bags could result in high pressure drop of bag-filter system and subsequent decrease of air flow rate since the cylindrical type bag-filter system should have the upward flow pattern. In addition, the supply of very high pressure pulse air jet to remove particulate matters on the surface of filter could result in a frequent rupture of bags. To overcome these shortcomings of the cylindrical type, the rectangular type was developed in the developed countries and imported to Korea. But, there was not many design data available to understand the mechanisms. Thus, the fundamental experiments were conducted in this study to get some ideas about the pulse jet cleaning of rectangular type bag filter system. The experimental factors are as follows; pulse distance, pulse duration, pulse interval, pulse pressure and pulse nozzle type. Experiments followed the factorial design method. With the shorter pulse distance, the distribution of pressure drops was relatively not uniform while the particulate removal efficiency was higher. With the longer duration of pulsing and the more number of pulse nozzle, the removal efficiency was higher and the pressure drop distribution was more uniform.

Effect of the circle tunnel on induced force distribution around underground rectangular gallery using theoretical approach, experimental test and particle flow code simulation

  • Vahab, Sarfarazi;Reza, Bahrami;Shadman Mohammadi, Bolbanabad;Fariborz, Matinpoor
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.633-649
    • /
    • 2022
  • In this study, the effect of circle tunnel on the force distribution around underground rectangular gallery was investigated using theoretical approach, experimental test and Particle flow code simulation (PFC). Gypsum model with dimension of 1500×1500 mm was built. Tensile strength of material was 1 MPa. Dimension of central gallery was 100 mm×200 mm and diameter of adjacent tunnel in its right side was 20 mm, 40 mm and 60 mm. Horizontal distance between tunnel wall and gallery edge were 25, 50, 75, 100 and 125 mm. using beam theory, the effect of tunnel diameter and distance between tunnel and gallery on the induced force around gallery was analyzed. In the laboratory test, the rate of loading displacement was set to 0.05 millimeter per minute. Also sensitivity analysis has been done. Using PFC2D, interaction between tunnel and gallery was simulated and its results were compared with experimental and theoretical analysis. The results show that the tensile force concentration has maximum value in center of the rectangular space. The tensile force concentration at the right side of the axisymmetric line of gallery has more than its value in the left side of the galleries axisymmetric line. The tensile force concentration was decreased by increasing the distance between tunnel and rectangular space. In whole of the configurations, the angles of micro cracks fluctuated between 75 and 105 degrees, which mean that the variations of tunnel situation have not any influence on the fracture angle.

Effects of turbulent boundary layer thickness on flow around a low-rise rectangular prism

  • Kim, Kyung Chun;Ji, Ho Seong;Seong, Seung Hak
    • Wind and Structures
    • /
    • v.8 no.6
    • /
    • pp.455-467
    • /
    • 2005
  • The effects of upstream velocity profiles on the flow around a low-rise rectangular prism submerged in a turbulent boundary layer have been investigated. Three different boundary layer profiles are generated, which are characterized by boundary layer height, displacement thickness, and momentum thickness. Flow characteristics variations caused by the different layers such as those in turbulent kinetic energy distribution and locations of re-circulating cavities and reattachment points have been precisely measured by using a PIV (Particle Image Velocimetry) technique. Observations were made in a boundary layer wind tunnel at $Re_H$=7900, based on a model height of 40 mm and a free stream velocity of 3 m/s with 15 - 20% turbulence intensity.

A Numerical Analysis of Turbulent Flow Field and Contamination Particles Movements in Rectangular Chambers (장방형 공간내 난류유동및 오염물질 거동의 수치해석)

  • Shim, W.S.;Song, K.C.;Hwang, T.Y.;Shin, Y.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.350-364
    • /
    • 1991
  • The movements of small particles distributed uniformly in a steady flow in rectangular chambers having inlets and outlets were simulated numerically. Low Reynolds number turbulent model with a two-equation ($k-{\varepsilon}$) which describes the turbulent characteristics was applied to predict the air flow pattern and particles movements under the condition of the various locations and size of ducts. The calculation results show that the prediction of recirculation zone and stagnation point of flow is important to determine the particles behavior according to the design change. These results will be useful in designing the rectangular chambers for collective protection.

  • PDF

Impedance Calculation of the Rectangular Power Plane by the Waveguide Model (구형 도파관 모델에 의한 직사각형 전원평면의 임피던스 계산)

  • Park Myun-Joo;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.12 s.91
    • /
    • pp.1147-1151
    • /
    • 2004
  • A novel impedance model is proposed fur the rectangular power plane along with the analytic impedance expression derived from it. The power plane is modeled as a section of a rectangular waveguide with appropriate boundary conditions around its periphery. As a result, the derived impedance expression based on the proposed model has the one-dimensional series form, which is simpler and computationally more efficient than the existing formula based on cavity model of the power plane.

Overall Illuminance Uniformity of IRED Lighting in Nighttime CCTV

  • Sa-Gong, Geon;Park, Yung-Jun;Park, Jung-Je;Lee, Suho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.35-41
    • /
    • 2017
  • This study looks at optimizinge light redistribution to improve the overall illuminance uniformity of commercial IRED modules. To obtain uniform illumination over a prescribed rectangular area, a freeform surface lens was evaluated using TracePro. The LED light overall illuminance uniformity regulated in KSC 7658 was verified using Relux software. Experimental test results showed 0.81 overall illuminance uniformity for rectangular light distribution of LED lights having a radiation angle of $80^{\circ}$. After fabricating prototype IRED lights based on these simulation results, illuminance performance was observed when used as actual IRED lighting with a nighttime CCTV system. Image observation photographs of the prototype $80^{\circ}$ rectangular IRED lights confirmed that object images can be seen clearly owing to high overall illuminance uniformity, and that dark regions of the CCTV screen were not shown.

Numerical Study on Flow Characteristics of Synthetic Jet with Slot Exit (Synthetic Jet 출구 형상의 변화에 따른 유동 특성 파악을 위한 수치적 연구)

  • Kim, Min-Hee;Kim, Woo-Re;Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.356-361
    • /
    • 2011
  • The flow characteristics of synthetic jet depending on rectangular and circular jet exit configuration are investigated using numerical computation with cross flow. In rectangular slot, synthetic jet generates the strong vortex, however, supply fewer momentum and effectiveness of flow control is reduced along flow direction. In circular slot, regular vortex is fanned from slot center to end and developed in flow direction. It affects the wider region than rectangular slot. The distribution of wall shear stress is considered in order to indicate the effectiveness of flow control device for flow separation delay. As a result, circular slot is a more suitable candidate for delaying flow separation.

  • PDF