• 제목/요약/키워드: Rectangular distribution

검색결과 484건 처리시간 0.025초

가뭄심도-지속기간-빈도해석을 통한 우리나라 가뭄의 공간분포 분석 (Analysis of Spatial Distribution of Droughts in Korea through Drought Severity-Duration-frequency Analysis)

  • 김대하;유철상
    • 한국수자원학회논문집
    • /
    • 제39권9호
    • /
    • pp.745-754
    • /
    • 2006
  • 본 연구에서는 구형펄스모형을 이용한 가뭄심도-지속기간-생기빈도 해석 방법을 적용하여 전국 59개 지점에 대한 분석을 수행하고, 이를 통해 남한전체 가뭄심도의 공간분포를 특성화하였다. 먼저 일정재현기간에 대해 가뭄심도는 대체적으로 남부지방에서 크게 나타남을 확인할 수 있었다. 구형펄스의 중첩을 고려하는 경우와 고려하지 않는 경우 모두에 대해 이러한 경향은 일관되게 나타났으며 지속기간이 증가하더라도 남부지방의 가뭄 심도는 타 지역에 비해 여전히 큰 것으로 나타났다. 본 연구의 결과는 관측된 가뭄의 발생횟수 및 최대심도와 비교되었는데, 이를 통해 본 연구에서의 해석결과가 어느 정도의 신뢰도를 가짐을 확인할 수 있었다.

Evaluation of Internal Resistance in Asphalt Concretes

  • Zandi, Yousef;Akpinar, Muhammet Vefa
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권4호
    • /
    • pp.247-250
    • /
    • 2012
  • Composites are somewhat more difficult to model than an isotropic material such as iron or steel due to the fact that each layer may have different orthotropic material properties. In finite element literature the asphalt mixes are represented by using rectangular meshes, not the actual picture of their cross-sections. Asphalt aggregate size and distribution in the asphalt concrete sample, aggregate shape, and fractured surface effects are ignored. In this research, the actual image of the sample including all these effects were directly considered in the finite element. The samples, were cut into cross-sections and were scanned. The image-processing toolbox of Labview was utilized in obtaining the rectangular gray images of the scanned images. In the rectangular sample the aggregates were white and the asphalt binders were black. The grayscale images were converted by LABVIEW into the format required by ANSYS as an input file, with the same dimensions. The nodes at the bottom of the model were constrained in both x and y directions. Left and right edges were symmetry and top was free. Certain amount of pressure was applied along the top surface to simulate the tire pressure.

사각채널에 설치된 배플이 열전달과 마찰계수에 미치는 효과 (Effects of Baffles on Heat Transfer and Friction Factors in a Rectangular Channel)

  • 안수환;강호근;배성택;송민호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.693-701
    • /
    • 2006
  • The present work investigates the local heat transfer characteristics and the associated frictional loss in a rectangular channel with inclined solid and perforated baffles to obtain the basic design data for gas turbine. Five different geometries of baffles such as 1) solid (without hole), 2) three holes, 3) six holes, 4) nine holes, 5) twelve holes were covered. A combination of two baffles of same overall size is used. The flow Reynolds number is ranged from 28,900 to 70,100. The placement of baffles augments the overall heat transfer greatly by combining both jet impingement and the boundary layer separation. The present results show that the average Nusselt number distribution is strongly dependent on number of holes in the baffle plates, i.e., the average Nusselt number increases with increasing number of holes. The friction factor decreases also with increasing the number of holes. however. its value increases with increasing the Reynolds number.

직사각형 프리즘 주위의 유동특성에 대한 경계층 두께의 영향 (Effect of Boundary Layer Thickness on the Flow Characteristics around a Rectangular Prism)

  • 지호성;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.306-311
    • /
    • 2001
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer$(\delta=270mm)$ was the natural turbulent boundary layer at the test section with fully long developing length(18m). The thin boundary layer with 36.5mm thickness was generated by on a smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity and the height of the model was $7.9{\times}10^3$. The mean velocity vector fields and turbulent kinetic energy distribution were measured and compared. The effect of boundary layer thickness is clearly observed not only in the length of separation bubble but also in the reattachment points. The thinner boundary layer thickness, the higher turbulent kinetic energy peak around the model roof. It is strongly recommended that the height ratio between model and approaching boundary layer thickness should be a major parameter.

  • PDF

극박판 사각 드로잉에 있어서 드로잉속도와 블랭크홀딩력의 영향 (Influence of Drawing Speed and Blank Holding Force in Rectangular Drawing of Ultra Thin Sheet Metal)

  • 이준형;정완진;김종호
    • 소성∙가공
    • /
    • 제21권6호
    • /
    • pp.348-353
    • /
    • 2012
  • Micro-drawn parts have received wider acceptance as products become smaller and more precise. The subject of this study was the deformation characteristics of ultra thin sheet metal in micro drawing of a rectangular shaped part. The influence of drawing speed and blank holding force on the product quality was investigated in micro-drawing of ultra thin sheet of beryllium copper (C1720) alloy. The specimen had a diameter of 4.8 mm and a thickness of $50{\mu}m$. Experiments were carried out in which, different blank holding force and drawing speed were considered. The product quality was evaluated by measuring the thickness and hardness along two specified directions, namely, the side and diagonal directions. The distribution of the thickness strain showed severe thinning especially around the punch radius in both directions. In the diagonal direction, thickening occurred in the flange area due to the axi-symmetric drawing mode. The increase of blank holding force and/or drawing speed was found to cause severe thinning around the punch radius. The blank holding force had a greater effect on thinning of the product than the drawing speed.

방어구조물 형상에 따른 토석류의 유입특성과 위험도 평가 (Inflow Characteristics of Debris Flow and Risk Assessment for Different Shapes of Defensive Structure)

  • 오승명;송창근;이승오
    • 한국안전학회지
    • /
    • 제31권6호
    • /
    • pp.93-98
    • /
    • 2016
  • This study analyzed the inflow characteristics of debris flow according to shape of defensive structure and computed risk index. In order to simulate debris flow, two shapes of defensive structure were considered. Initial mass distribution was set with a rectangular shape and defensive structures were set semi-circular shape and rectangular shape, respectively. It was found that a defensive structure with semicircular shape was more vulnerable to debris impact compared with rectangular shape because the flow mass became concentrated in quadrant part of the inner circle. If the velocity of the debris flow was less than 1 m/s, the risk assessment by FII (Flood Intensity Index) was much appropriate. However, when the movement of debris runout was faster than 1 m/s, the risk index of FHR (Flood Hazard Rating) provided improved classification due to its subdivided hazardous range.

수치 해석을 이용한 단일 마이크로채널의 단면 가열 조건의 열전달 특성에 관한 연구 (Investigation of Heat Transfer in Microchannel with One-Side Heating Condition Using Numerical Analysis)

  • 최치웅;허철;김동억;김무환
    • 대한기계학회논문집B
    • /
    • 제31권12호
    • /
    • pp.986-993
    • /
    • 2007
  • The microchannel heat sink is promising heat dissipation method far high density electronic devices. The cross-sectional shape of MEMS based microchannel heat sink is limited to triangular, trapezoidal, and rectangular due to their fabrication method. And heat is added to one side surface of heat source. Therefore, those specific conditions make some complexity of heat transfer in microchannel heat sink. Though many previous research of conjugate heat transfer in microchannel was conducted, most of them did not consider heat loss. In this study, numerical investigation of conjugate heat transfer in rectangular microchannel was conducted. The method of heat loss evaluation was verified numerically. Heat distribution was different for each wall of rectangular microchannel due to thermal conductivity and distance from heat source. However, the ratio of heat from each channel wall was correlated. Therefore, the effective area correction factor could be proposed to evaluate accurate heat flux in one side heating condition.

풍동 내 난류 경계층 생성과 육면체의 형상 변화에 따른 표면 압력 변화 연구 (Study on the Generation of Turbulent Boundary Layer in Wind Tunnel and the Effect of Aspect Ratio of a Rectangular Obstacle)

  • 임희창;정태윤
    • 대한기계학회논문집B
    • /
    • 제32권10호
    • /
    • pp.791-799
    • /
    • 2008
  • We investigate the flow characteristics around a series of rectangular bodies ($40^d{\times}80^w{\times}80^h$, $80^d{\times}80^w{\times}80^h$ and $160^d{\times}80^w{\times}80^h$) placed in a deep turbulent boundary layer. The study is aiming to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge, when the flow is normal, which is responsible for producing extreme suction pressures on the roof. The experiment includes wind tunnel work by using HWA (Hot-Wire anemometry) and pressure transducers. The experiments are carried out at three different Reynolds numbers, based on the velocity U at the body height h, of $2.4{\times}10^4$, $4.6{\times}10^4$ and $6.7{\times}10^4$, and large enough that the mean flow is effectively Reynolds number independent. The results include the measurements of the growth of the turbulent boundary layer in the wind tunnel and the surface pressure around the bodies.

복합 부수로의 비정상 유동이 유발하는 난류열전달 증진에 대한 LES 해석 (Large Eddy Simulation of Heat Transfer Performance Enhancement due to Unsteady Flow in Compound Channels)

  • 홍성호;신종근;최영돈
    • 설비공학논문집
    • /
    • 제23권2호
    • /
    • pp.132-138
    • /
    • 2011
  • In the present article, we investigate numerically turbulent flow of air through compound rectangular channels. Large eddy simulation(LES) is employed for unsteady turbulence modeling. LES gives better predictions for the axial mean velocity distribution than those of other turbulent models. Strong large-scale quasi-periodic flow oscillations are observed in most of the geometries investigated. Such large-scale flow oscillations in compound rectangular channels are similar to the quasi-periodic flow pulsation through the gaps between fuel rod bundle in nuclear reactor. It exists in any longitudinal connecting gap between two flow channels. The frequency of this flow oscillation is determined by the geometry of the gap. The large scale cross motions through the rectangular compound channels induce significant heat transfer enhancement of the compound channel flow.

산고래 온돌연도내의 유동분포에 관한 수치해석 (Numerical Analysis on the Flow Distribution in Ondol Flue Channel)

  • 민만기;이승우
    • 대한설비공학회지:설비저널
    • /
    • 제12권4호
    • /
    • pp.264-274
    • /
    • 1983
  • Two-dimensional jet flows into a couple of confined rectangular enclosures such as an Ondol flue channel and their flow distributions were analyzed by numerical graphics : rectangular space in one enclosure is vacated and the other has 8 rectangular small posts. Both enclosures have a protruded inlet nozzle and on outlet on its center line. Steady state incompressible laminar viscous flow was assumed. The primitive forms of Navier-Stokes equations and continuity equation in a cartesian coordinate system were solved numerically by the Marker and Cell method for Reynolds numbers of 5, 10, 20, 30 and 40. From the numerical graphics it was found that the flow regions in both enclosures were devided into tow parts ; one part was the jet flow localized in a narrow center region of the enclosure and the other part was the very slow recirculating flow occupying the rest of the flow region in the enclosures. However there were a little differences in the shapes of jet flow in both enclosures for Reynolds numbers of 5 and 10 and also in the shapes of recirculating flows in both enclosures for all Reynolds number. Also it was found that waving flow appeared right before the outlet at Reynolds number of 20 and more.

  • PDF