• Title/Summary/Keyword: Rectangular arrays

Search Result 49, Processing Time 0.023 seconds

Superelevation and Bed Variation Due to Attack Angle of Submerged Vanes in Curved Channel (수제 입사각에 따른 개수로 만곡부의 편수위와 하상변동)

  • Park, Sang Deog;Paik, Joongcheol;Jeon, Woo Sung;Lee, Hyun Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.297-306
    • /
    • 2019
  • Since the centrifugal force acts on the flow in the curved channel, a transverse water surface gradient occurs and the thalweg is biased toward the outer bank. The submerged vanes may be used to solve various engineering problems of the curved channels. In order to analyze the influence of an attack angle and the distance between the vane arrays on the river bed variation and the superelevation in a bend, movable bed hydraulic experiments were conducted in a $90^{\circ}$ curved rectangular channel of a small-size gravel bed. Installing the submerged vanes in the bend increases the maximum scour depth. But if vanes are installed in a uniform obtuse angle, the scour depth may be reduced. If the flow rate in the channel bend with vanes equals to the channel forming discharge, the location of the maximum scour depth moved to the downstream and the superelevation increased. However if the flow rate is smaller than that, the location of the maximum scour depth moved upstream and the superelevation decreased. The channel bed change and the superelevation due to the installation of the submerged vanes have been dependent on the interaction of the attack angle, the flow rate, and the distance between the arrays.

Carbon-induced reconstructions on W(110)

  • Kim, Ji-Hyeon;Rojas, Geoff;Anders, Axel;Kim, Jae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.362-362
    • /
    • 2010
  • Today, vast attention has been paid to periodic arrays of nanostructures due to their potential for applications such as memory with huge storage density. Such application requires large-scale fabrication of well ordered nano-sized structures. One of the most widely used methods for the ordered nanostructures is lithography. This top-down process, however, has the limit to reduce size. Here the promising alternative is the self-organization of ordered nano-sized structures such as large scale 2d carbon-induced reconstructions on W(110). In the present study, we report on the first well-resolved atomic resolution STM studies of the well-known R($15{\times}3$) and R($15{\times}12$) carbon induced reconstruction of the W(110). From the atomic image of R($15{\times}3$) for different values of tunneling gap resistance, we can tell there are no missing atoms in unit cells of R($15{\times}3$) and some atomic displacements are substantial from the clean W(110), even though not all the imaged position of atoms correspond to tungsten, but may include those of carbon. We are considering two cases; First case is related to lattice deformation, or top layer of W(110) is deformed in the process of relief of strain caused by random inserting of carbon atoms possibly in the interstitial position. In the second case, R($15{\times}3$) unit cell results from a coincidence lattice between clean W(110) substrate and tungsten carbide overlayer which has rectangular atomic arrangement and giving R($15{\times}3$) coincidence lattice. beta-W2C showing rectangular unit cell should be a candidate. Further, we report on new reconstructions. Unlike the well-known R($15{\times}12$) consisting of two parts, two inner structures between two "Backbone" structures. The new reconstruction, which we found for the first time, contains more parts between the "Backbone"s. Sometimes we can observe the reconstruction consists of only inner parts without "Backbone" parts. Thus, the observed reconstruction can be built by constructing of two types of "Lego"-like block. Moreover, the rectangle shape of "Backbone" transform to parallelogram-like shape over time, the so-called wavy-R($15{\times}12$). Adsorption of hydrogen can be the reason for this transformation.

  • PDF

Shape Optimization of a Rotating Cooling Channel with Pin-Fins (핀휜이 부착된 회전하는 냉각유로의 최적설계)

  • Moon, Mi-Ae;Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.703-714
    • /
    • 2010
  • This paper describes the design optimization of a rotating rectangular channel with staggered arrays of pin-fins by Kriging metamodeling technique. Two non-dimensional variables, the ratio of the height to the diameter of the pin-fins and the ratio of the spacing between the pin-fins to the diameter of the pin-fins are chosen as the design variables. The objective function that is a linear combination of heat transfer and friction loss related terms with a weighting factor is selected for the optimization. To construct the Kriging model, objective function values at 20 training points generated by Latin hypercube sampling are evaluated by a three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis method with the SST turbulence model. The Kriging model predicts the objective function value that agrees well with the value calculated by the RANS analysis at the optimum point. The objective function is reduced by 11% by the optimization of the channel.

The Excess and Deficit Rule and The Rule of False Position (동양의 영부족술과 서양의 가정법)

  • Chang Hyewon
    • Journal for History of Mathematics
    • /
    • v.18 no.1
    • /
    • pp.33-48
    • /
    • 2005
  • The Rule of False Position is known as an arithmetical solution of algebraical equations. On the other hand, the Excess-Deficit Rule is an algorithm for calculating about excessive or deficient quantitative relations, which is found in the ancient eastern mathematical books, including the nine chapters on the mathematical arts. It is usually said that the origin of the Rule of False Position is the Excess-Deficit Rule in ancient Chinese mathematics. In relation to these facts, we pose two questions: - As many authors explain, the excess-deficit rule is a solution of simultaneous linear equations? - Which relation is there between the two rules explicitly? To answer these Questions, we consider the Rule of Single/Double False Position and research the Excess-Deficit Rule in some ancient mathematical books of Chosun Dynasty that was heavily affected by Chinese mathematics. And we pursue their historical traces in Egypt, Arab and Europe. As a result, we can make sure of the status of the Excess-Deficit Rule differing from the Rectangular Arrays(the solution of simultaneous linear equations) and identify the relation of the two rules: the application of the Excess-Deficit Rule including supposition in ancient Chinese mathematics corresponds to the Rule of Double False Position in western mathematics. In addition, we try to appreciate didactical value of the Rule of False Position which is apt to be considered as a historical by-product.

  • PDF

Development of a Fast Neutron Detector (속중성자 탐지용 반도체 소자 개발)

  • 이남호;김승호;김양모
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.545-552
    • /
    • 2003
  • When a Si PIN diode is exposed to fast neutrons, it results in displacement damage to the Si lattice structure of the diode. Defects induced from structural dislocation become effective recombination centers for carriers which pass through the base of a PIN diode. Hence, increasing the resistivity of the diode decreases the current for the applied forward voltage. This paper involves the development of a neutron sensor based on the phenomena of the displacement effect damaged by neutron exposure. The neutron effect on the semiconductor was analyzed. Several PIN diode arrays with various thickness and cross-section area of the intrinsic layer(I layer) were fabricated. Under irradiation tests with a neutron beam, the manufactured diodes have a good linearity to neutron dose and show that the increase of thickness of I layer and the decrease of cross-section of PIN diodes improve the sensitivity. Newly developed PIN diodes with thicker I layer and various cross section, were retested and then showed the best neutron sensitivity at the condition that the I layer thickness was similar to a side length. On the basis of two test results, final discrete PIN diodes with a rectangular shape were manufactured and the characteristics as neutron detectors were analyzed through the neutron beam test using on-line electronic dosimetry system. Developed PIN diode shows a good linearity as dosimetry in the range of 0 to 1,000cGy(Tissue) and its neutron sensitivity is 13mV/cGy at constant current of 5mA, that is three times higher than that of commercially available neutron detectors. And the device shows little dependency on the orientation of the neutron beam and a considerable stability in annealing test for a long period.

Numerical study on the pressure drop and heat transfer enhancement in a flat-plate solar collector (평판형 태양열 집열기의 압력강하 및 열전달 성능 향상에 관한 수치해석적 연구)

  • Heo, Joo-Nyoung;Shin, Jee-Young;Lee, Dooho;Son, Young-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.316-323
    • /
    • 2013
  • The use of artificial roughness in various forms of shapes and sizes is the most common and effective way to improve the performance of a flat-plate solar collector. In the present study, numerical analysis on heat transfer and pressure drop was performed in a rectangular channel with various rib arrays. The uniform heat flux is applied to the channel from the upper side. The forms of ribs considered in this study were rib $90^{\circ}$, groove $90^{\circ}$, groove $60^{\circ}$, baffle $90^{\circ}$, baffle $60^{\circ}$, wave $90^{\circ}$ and wave $60^{\circ}$. Air is the working fluid, and the Reynolds number ranges from 3200 to 17800. Nusselt number and friction factor were investigated to predict the performance of the system with various type of ribs. The average Nusselt number and pressure drop were increased with the increase of velocity in all types of ribs. The highest heat transfer and pressure drop occurred for the baffle $90^{\circ}$, but highest performance factor considering heat transfer and pressure drop together occurred for the groove $60^{\circ}$. Therefore, heat transfer and pressure drop should be considered together when a flat plate solar collector is designed.

Time-delay Estimation Method for Performance Enhancement of Underwater Source Localization using Doublet Array (Doublet 센서배열의 수중음원 위치 추정 성능 향상을 위한 시간지연 추정 기법)

  • Sim, Min-Seop;Lee, Ji-Hyeog;Lee, Hyeong-Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.69-76
    • /
    • 2020
  • The sound signal radiated from an underwater source is received by the hydrophone of the system, including multi-path time-delay and multi-path signal by sea surface and bottom reflection. The system using a time-delay between received signals for the source localization shows performance degradation due to incoherence by the multi-path propagation environment and the disturbance of a marine environment. Various types of array and signal processing have been used for robust source range and bearing estimation in this environment. In this paper, we use a line array composed of doublet array and an estimated time-delay correction method for robust localization performance in a multi-path propagation environment. Three doublet arrays are located on the same line, and the time-delay between signals received on each doublet array is estimated in a two-step procedure. The estimated time-delay value is obtained by the cross-correlation function and corrected by the interaction formula between the center-frequency of received signal and the geometry of the array with respect to aperture. By this proposed procedure, the range and bearing of source from array were calculated. In order to confirm the validity of the proposed method and array, we simulated localization and estimation using the Monte-Carlo method.

Regeneration of the Retarded Time Vector for Enhancing the Precision of Acoustic Pyrometry (온도장 측정 정밀도 향상을 위한 시간 지연 벡터의 재형성)

  • Kim, Tae-Kyoon;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.118-125
    • /
    • 2014
  • An approximation of speed of sound in the measurement plane is essential for the inverse estimation of temperature. To this end, an inverse problem relating the measured retarded time data in between set of sensors and actuators array located on the wall is formulated. The involved transfer matrix and its coefficient vectors approximate speed of sound of the measurement plane by using the radial basis function with finite number of interpolation points deployed inside the target field. Then, the temperature field can be reconstructed by using spatial interpolation technique, which can achieve high spatial resolution with proper number of interpolation points. A large number of retarded time data of acoustic paths in between sensors and arrays are needed to obtain accurate reconstruction result. However, the shortage of interpolation points due to practical limitations can cause the decrease of spatial resolution and deterioration of the reconstruction result. In this works, a regeneration for obtaining the additional retarded time data for an arbitrary acoustic path is suggested to overcome the shortage of interpolation points. By applying the regeneration technique, many interpolation points can be deployed inside the field by increasing the number of retarded time data. As a simulation example, two rectangular duct sections having arbitrary temperature distribution are reconstructed by two different data set: measured data only, combination of measured and regenerated data. The result shows a decrease in reconstruction error by 15 % by combining the original and regenerated retarded time data.

A Development of Tapered Metallic Microneedle Array for Bio-medical Application (생체의학에 적용 가능한 테이퍼형태의 금속성 마이코로니들 어레이의 개발)

  • Che Woo Seong;Lee Jeong-Bong;Kim Kabseog;Kim Kyunghwan;Jin Byung-Uk
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.2 s.31
    • /
    • pp.59-66
    • /
    • 2004
  • This paper presents a novel fabrication process for a tapered hollow metallic microneedle array using backside exposure of SU-8, and analytic solutions of critical buckling of a tapered hollow microneedle. An SU-8 meta was formed on a Pyrex glass substrate and another SU-8 layer, which was spun on top of the SU-8 mesa, was exposed through the backside of the glass substrate. An array of SU-8 tapered pillar structures. with angles in the range of $3.1^{\circ}{\sim}5^{\circ}$ was formed on top of the SU-8 mesa. Conformal electrodeposition of metal was carried out followed by a mechanical polishing using a pianarizing polymeric layer. All organic layers were then removed to create a metallic hollow microneedle array with a fluidic reservoir on the backside. Both $200{\mu}m\;and\;400{\mu}m$ tall, 10 by 10 arrays of metallic microneedles with inner diameters of the tip in the range of $33.6{\sim}101\;{\mu}m$ and wall thickness of $10{\mu}m\;-\;20{\mu}m$ were fabricated. Analytic solutions of the critical buckling of arbitrary-angled truncated cone-shaped columns are also presented. It was found that a single $400{\mu}m$ tall hollow cylindrical microneedle made of electroplated nickel with a wall thickness of $20{\mu}m$, a tapered angle of $3.08^{\circ}$ and a tip inner diameter of $33.6{\mu}m$ has a critical buckling force of 1.8 N. This analytic solution can be used for square or rectangular cross-sectioned column structures with proper modifications.

  • PDF