• Title/Summary/Keyword: Rectangular Tube

Search Result 175, Processing Time 0.023 seconds

Maximum Crippling Load in Eccentrically Compressed rectangular Tubes (편심압축하중을 받는 사각튜브의 최대압괴하중)

  • 김천욱;한병기;정창현;김지홍
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.180-189
    • /
    • 1999
  • This paper describes the collapse characteristics of the rectangular tube under eccentric compressive load. Local buckling stress and maximum crippling load are investigated. A thin-walled tube under load is controlled by local buckling or yielding of material according to the ratio of thickness to width (t/b) of the cross section, and subsequent collapse of the section. The relationship can be divided into three regions : elastic , post-buckling and crippling . the load-displacement relationship is theoretically presented in each region by introducing the stress distribution of the cross section in the loading process. And the maximum load carrying capacity is derived in the closed form as a function of normal stress on the flange and web.

  • PDF

A Study on the Axial Crush Analysis of a Rectangular Tube with Experimental Comparison (사각관의 붕괴해석 및 실험에 관한 연구)

  • 강신유;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2555-2562
    • /
    • 1993
  • In this paper, the axial crush of the rectangular STS304 tube is analyzed using DYNA3D, and 10 models are tested under quasi-static load. The deformed shapes of analysis and test are present, and the analysis results are compared with the results of quasi-static test. This paper describes that free rotational boundary condition causes a very similar deformed shapes to expermental results, and using the elastic buclking modes as initial imperfecion shapes, the deformed shapes are very close to the experimental shapes.

A Study on the Basic Shape of an MF Evaporator (MF증발기 기초 형상 설계에 관한 연구)

  • Park, Yong-Seok;Seong, Hong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.39-44
    • /
    • 2019
  • The evaporator is a key driver of an air conditioning system's efficiency. In this study, we study methods of maximizing the efficiency of a Massey Ferguson (MF) evaporator by measuring how the cooling performance of different shapes vary with temperature. We varied the tube insertion depth as well as the shape of the evaporator's header and tube. When we compare header shapes of "D", "Ellipse", and "Quadrangle" types, we find that the elliptical header creates the smallest pressure loss and the highest temperature difference. Between tube shapes of "Rectangular", "Projection", and "Circular" types, the "Projection" type tube creates the most temperature difference. We also investigated the depth of tube insertion in the header and find that tube insertion of 5 - 10 mm is feasible; we selected the depths of 5, 7, and 10 mm since they corresponded to approximately 30%, 50%, and 70% of the total width of the header. The tube insertion test demonstrated that a tube insertion depth of 7 mm creates the least pressure loss and the highest temperature difference. In conclusion, the optimal evaporator design uses an "Ellipse" type header, "Projection" type tube, and a tube insertion depth between 30 and 50% of the header width.

Two-Phase Flow Patterns of $CO_{2}$ in a Heated Narrow Rectangular Channel (미세사각채널에서 $CO_{2}$의 이상유동 양식에 관한 연구)

  • Kim Yongchan;Yun Rin;Chung Jin Taek
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.66-72
    • /
    • 2004
  • The heat transfer and pressure drop characteristics of $CO_{2}$ are substantially different from those for CFC and HCFC refrigerants. In addition, geometric effects on two-phase flow patterns of $CO_{2}$ are also very significant in many respects. Therefore, two-phase flow patterns of $CO_{2}$ in a narrow rectangular channel or a small diameter tube whose gap size or hydraulic diameter is less than 2 mm are very important to understand heat transfer characteristics and to develop an appropriate heat transfer correlation. In the present study, the evaporation process of $CO_{2}$ in a narrow rectangular channel is visualized at various test conditions, and then the effects of operating conditions are analyzed.

  • PDF

Ultimate strength of rectangular concrete-filled steel tubular (CFT) stub columns under axial compression

  • Huang, Yan-Sheng;Long, Yue-Ling;Cai, Jian
    • Steel and Composite Structures
    • /
    • v.8 no.2
    • /
    • pp.115-128
    • /
    • 2008
  • A method is proposed to estimate the ultimate strength of rectangular concrete-filled steel tubular (CFT) stub columns under axial compression. The ultimate strength of concrete core is determined by using the conception of the effective lateral confining pressure and a failure criterion of concrete under true triaxial compression, which takes into account the difference between the lateral confining pressure provided by the broad faces of the steel tube and that provided by the narrow faces of the steel tube. The longitudinal steel strength of broad faces and that of the narrow faces of the steel tube are calculated respectively due to that buckling tends to occur earlier and more extensively on the broader faces. Finally, the proposed method is verified with experimental results. Corresponding values of ultimate strength calculated by ACI (2005), AISC (1999) and GJB4142-2000 are given respectively for comparison. It is found from comparison that the proposed method shows a good agreement with the experimental results.

A Study on the Strength of H Beam-to-Rectangular Tube Column Connections with Exterior Diaphragms by Simplified Tension Test (단순 인장 실험에 의한 외부 스티프너를 갖는 각형 강관기둥과 H형강보 접합부의 최대내력에 대한 연구)

  • Park, Jong Won;Kang, Hae Kwan;Lee, Sang Hoon;Kim, Young Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.25-35
    • /
    • 1998
  • A moment connection of H beam-to-rectangular tube column with external stiffeners was proposed. A formula to predict the ultimate strength of the connection was derived based on the yield line mechanism. Experimental investigation was performed to determine the applicability of the connection type and the strength formula. The ultimate strengths computed by the formula agreed well with the experimental values.

  • PDF

Bifurcation Criterion in Eccentrically Compressed Rectangular Tubes (편심압축하중을 받는 사각튜브의 분기세장비)

  • 김천욱;한병기;정창현;김치균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.270-278
    • /
    • 1999
  • This paper describes the collapse characteristics of the rectangular tube under eccentric compressive load. Overall buckling stress and bifurcation criterion (slenderness ration)are investigated. modified secant formula(MSF) is proposed to decide overall buckling stress. The bifurcation criterion which can distinguish between the local and overall buckling mode shapes is suggest by equating the local and overall buckling stresses. Additionally the effect of initial imperfection on bifurcation criterion is investigated.

  • PDF

Behavior of gusset plate-T0-CCFT connections with different configurations

  • Hassan, M.M.;Ramadan, H.M.;Naeem, M.;Mourad, S.A.
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.735-751
    • /
    • 2014
  • Concrete-filled steel tube (CFT) composite columns, either circular (CCFT) or rectangular (RCFT), have many economical and aesthetic advantages but the behavior of their connections are complicated. This study aims to investigate, through an experimental program, the performance and behavior of different connections configurations between circular concrete filled steel tube columns (CCFT) and gusset plates subjected to shear and axial compression loadings. The study included seventeen connection subassemblies consisting of a fixed length steel tube and gusset plate connected to the tube end with different details tested under half cyclic loading. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution.

Constitutive Relation of Concrete to Predict P-M Interaction Strength of Rectangular CFT Short Columns (콘크리트충전 각형강관단주의 P-M 조합강도 예측을 위한 콘크리트 구성방정식)

  • Lee, Cheol Ho;Kang, Ki Yong;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.31-42
    • /
    • 2015
  • The plastic stress distribution method and the strain compatibility method are the two representative methods to calculate the P-M interaction strength of RCFT (rectangular concrete filled tube) columns. The plastic stress distribution method is approximate while the stress compatibility method should approach the exact solution if accurate constitutive relations of the materials involved are used. Recent study by the authors pointed out that, because of lack of accurate constitutive model for the concrete confined by the rectangular steel tube, no strain compatibility method according to the current structural provisions provides a satisfactory prediction of the P-M interaction strength of RCFT columns under various material combinations. An empirical constitutive model which can capture the stress-strain characteristics of the confined concrete of RCFT columns is proposed based on analyzing extensive exisitng test database. The key idea was to define the concrete crushing strain as a function of steel-to-concrete strength ratio and width-to-thickness ratio of steel tube. It was shown that the proposed model leads to more accurate and more consistent prediction of the P-M interaction strength of RCFT columns under general design conditions.